C O M M U N I C A T I O N S
Scheme 4. Catalytic Cycle of the ZnI2-Catalyzed Simmons-Smith
Cyclopropanation
Supporting Information Available: Experimental procedure for
the preparation of compounds and spectroscopic data. This material
References
(1) Reviews: (a) Simmons, H. E.; Cairns, T. L.; Vladuchick, S. A.; Hoiness,
C. M. Org. React. 1973, 20, 1–131. (b) Charette, A. B.; Beauchemin, A.
Org. React. 2001, 58, 1–415. (c) Lebel, H.; Marcoux, J.-F.; Molinaro, C.;
Charette, A. B. Chem. ReV. 2003, 103, 977. (d) Pellissier, H. Tetrahedron
2008, 64, 7041.
(2) (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323–5324.
(b) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256–
4264.
(3) (a) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron Lett. 1966, 7,
3353–3354. (b) Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron
1968, 24, 53–58.
(4) (a) Elliott, M.; Janes, N. F. Chem. Soc. ReV. 1978, 7, 473–505. (b)
Donaldson, W. A. Tetrahedron 2001, 57, 8589–8627.
(5) (a) Liu, X.; Fox, J. M. J. Am. Chem. Soc. 2006, 128, 5600–5601. (b) Levin,
A.; Marek, I. Chem. Commun. 2008, 4300–4302. (c) Tarwade, V.; Liu,
X.; Yan, N.; Fox, J. M. J. Am. Chem. Soc. 2009, 131, 5382–5383.
(6) For use of gem-dizinc carbenoids, see: (a) Fournier, J.-F.; Mathieu, S.;
Charette, A. B. J. Am. Chem. Soc. 2005, 127, 13140–13141. (b) Zimmer;
L. E.; Charette, A. B. J. Am. Chem. Soc., published online Oct 8,
2009 (http://dx.doi.org/10.1021/ja906033g).
(7) For use of iodocyclopropanation, see: (a) Kim, H. Y.; Lurain, A. E.; Garcia-
Garcia, P.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc. 2005, 127, 13138–
13139. (b) Kim, H. Y.; Salvi, L.; Carroll, P. J.; Walsh, P. J. J. Am. Chem.
Soc. 2009, 131, 954–962. (c) Beaulieu, L.-P.; Zimmer, L. E.; Charette,
(8) For use of alkyl-substituted carbenoids in asymmetric Simmons-Smith
reaction, see: Charette, A. B.; Lemay, J. Angew. Chem., Int. Ed. Engl. 1997,
36, 1090–1092.
system, we performed the cyclopropanation on a similar alkene.
We were pleased to find that treating allylic alcohol 5 with 5
mol % of ZnI2 and only 1.25 equiv of phenyldiazomethane
furnished the cyclopropane 6 in 95% yield, 4:1 dr (Scheme 5).
This similar level of diastereoselectivity demonstrated the
potential of the reaction for diastereoselective cyclopropanation
reactions.
(9) For leading references on enantioselective cyclopropanation by transfer of
aryl methylene, see: (a) Aggarwal, V. K.; Smith, H. W.; Jones, R. V. H.;
Fieldhouse, R. Chem. Commun. 1997, 1785–1786. (b) Aggarwal, V. K.;
Smith, H. W.; Hynd, G.; Jones, R. V. H.; Fieldhouse, R.; Spey, S. E.
J. Chem. Soc., Perkin Trans. 1 2000, 3267–3276. (c) Aggarwal, V. K.;
Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem.,
Int. Ed. 2001, 40, 1433–1436. (d) Aggarwal, V. K.; de Vicente, J.; Bonnert,
R. V. Org. Lett. 2001, 3, 2785–2788. (e) Aggarwal, V. K.; Winn, C. L.
Acc. Chem. Res. 2004, 37, 611–620.
Scheme 5. ZnI2-Catalyzed Simmons-Smith Cyclopropanation
(10) For works on the use of diazo reagent and zinc salts in cyclopropanation,
see: (a) Wittig, G.; Schwarzenbach, K. Angew. Chem. 1959, 71, 652–652.
(b) Wittig, G.; Schwarzenbach, K. Liebigs Ann. Chem. 1961, 650, 1–20.
(c) Wittig, G.; Wingler, F. Liebigs Ann. Chem. 1962, 656, 18–21. (d) Wittig,
G.; Jautelat, M. Liebigs Ann. Chem. 1967, 702, 24–37. (e) Goh, S. H.;
Closs, L. E.; Closs, G. L. J. Org. Chem. 1969, 34, 25–31. (f) Altman, L. J.;
Kowerski, R. C.; Rilling, H. C. J. Am. Chem. Soc. 1971, 93, 1782–1783.
(g) Altman, L. J.; Kowerski, R. C.; Laungani, D. R. J. Am. Chem. Soc.
1978, 100, 6174–6182.
In summary, we developed the first enantioselective cyclo-
propanation of alkenes using zinc carbenoids generated in situ
from diazo compounds and zinc salts. This new method allows
the highly enantio- and diastereoselective synthesis of 1,2,3-
substituted cyclopropanes via aryl-substituted carbenoids. The
first Simmons-Smith reaction using a catalytic amount of zinc
to generate enantioenriched cyclopropane was also reported. The
development of the catalytic enantioselective cyclopropanation
reaction will be reported in due course.
(11) Groth, U.; Scho¨llkopf, U.; Tiller, T. Liebigs Ann. Chem. 1991, 1991, 857–
860.
(12) Denmark, S. E.; Christenson, B. L.; Coe, D. M.; Oconnor, S. P. Tetrahedron
Lett. 1995, 36, 2215–2218.
(13) For an exception, see: Shitama, H.; Katsuki, T. Angew. Chem., Int. Ed.
2008, 47, 2450–2453.
(14) (a) Charette, A. B.; Juteau, H. J. Am. Chem. Soc. 1994, 116, 2651–2652.
(b) Charette, A. B.; Juteau, H.; Lebel, H.; Molinaro, C. J. Am. Chem. Soc.
1998, 120, 11943–11952.
Acknowledgment. This work was supported by NSERC
(Canada), the Canada Foundation for Innovation, the Canada
Research Chair Program, and the Universite´ de Montre´al. We
also thank Jad Tannous (Universite´ de Montre´al) for SFC
separations. S.R.G. thanks NSERC (PGS D) for a postgraduate
fellowship as well as L.E. Zimmer and L.-P. Beaulieu for the
syntheses of starting materials.
(15) For seminal work on Simmons-Smith reaction using a catalytic amount
of zinc, see ref 10e.
(16) See Supporting Information.
(17) Performing the reaction with the dioxaborolane ligand 3 and a catalytic
amount of zinc led to low conversion. This is probably due to the Lewis
basic amides present in 3 that can coordinate to the zinc, thereby preventing
its release and catalytic turnovers.
(18) Charette, A. B.; Lebel, H. J. Org. Chem. 1995, 60, 2966–2967.
JA9074776
9
J. AM. CHEM. SOC. VOL. 131, NO. 43, 2009 15635