136
L.M. Yagupolskii et al. / Journal of Fluorine Chemistry 129 (2008) 131–136
(3 mL ꢂ 5 mL), dried over MgSO4 and concentrated in vacuum.
The residuewas purified by silica gel chromatography (pentane).
Evaporation of the solvent yielded 0.06 g of 11 (81%). Mp = 55–
56 8C (pentane) [20]. 19F NMR (CDCl3): d ꢀ76.9.
(d, 1H), 7.97 (d, 1H), 8.54 (d, 2H), 8.71 (d, 2H), 9.14 (s, 1H),
12.68 (br s, 1H). 19F NMR (CDCl3): d ꢀ53.4 (s, 3F), ꢀ149.2
(s, 4F). Anal. calcd for C15H10BF7N2O2S: C, 42.25; H, 2.35.
Found: C, 41.75; H 2.02.
3.10. Reaction of sodium diethoxyphosphinate and
diphenyl(S-trifluoromethyl)sulfonium tetrafluoroborate
References
[1] (a) P. Kirsch, In Modern Fluoroorganic Chemistry, Wiley-VCH, Wein-
heim, 2004;
To a solution of diethoxyphosphineoxide (0.4 g, 2.9 mmol) in
water-free glyme (2 mL) sodium hydride (0.17 g, 3.56 mmol)
was added. The reaction mixture was stirred for 1 h, and then the
solution became transparent. A solution of salt 3a (0.61 g,
1.78 mmol) in glyme (1 mL) was added to the reaction mixture.
The reaction mixture was stirred for additional 3 h at rt and then
poured onto water. The product was extracted with diethyl ether
and dried over MgSO4. Evaporation of the solvent resulted in
0.25 g of 12 (70%). Bp = 55–57 8C (7 Torr) [19]. 19F NMR
(CDCl3): d ꢀ73.22 (d, 3F, J = 121 Hz).
(b) K. Uneyama, In Organofluorine Chemistry, Blackwell, Oxford, 2006;
(c) J.-A. Ma, D. Cahard, J. Fluorine Chem. 128 (2007) 975–996.
[2] (a) L.M. Yagupolskii, Kiev (1988);
(b) M.A. McClinton, D.A. McClinton, Tetrahedron 48 (1992) 6555–
6666.
[3] G.K.S. Prakash, A.K. Yudin, Chem. Rev. 97 (1997) 757–786.
[4] L.M. Yagupolskii, I.I. Maletina, N.V. Kondratenko, V.V. Orda, Synthesis
(1978) 835–837.
[5] T. Umemoto, Y. Kuriu, H. Shuyama, O. Miyano, S.-I. Nakayama, J.
Fluorine Chem. 20 (1982) 695–698.
[6] (a) P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 12 (2006) 2579–
2586;
3.11. 4-Nitrophenyl(fluoro)trifluoromethylsulfonium
tetrafluoroborate (13)
(b) I. Kieltsch, P. Eisenberge, A. Togni, Angew. Chem. Int. Ed. 46 (2007)
754–757.
[7] L.M. Yagupolskii, N.V. Kondratenko, O.N. Timofeeva, Zh. Org. Khim. 20
(1984) 115–118, Chem. Abstr., 100 (1984) 191494e.
[8] J.-J. Yang, R.L. Kirchmeier, J.M. Shreeve, J. Org. Chem. 63 (1998) 2656–
2660.
XeF2 (0.14 g, 0.83 mmol) and BF3ꢁEt2O (0.1 g, 0.71 mmol)
were added to a stirred solution of 4-nitrophenyltrifluoro-
methylsulfide (0.15 g, 0.67 mmol) in dichloromethane (5 mL)
at ꢀ60 8C. The reaction mixture was stirred at rt till the end of
effervesce of gas. The product was used without further
purification.
[9] E. Magnier, J.C. Blazejewski, M. Tordeux, C. Wakselman, Angew. Chem.
Int. Ed. 45 (2006) 1279–1282.
[10] (a) T. Umemoto, S. Ishihara, Tetrahedron Lett. 31 (1990) 3579–3582;
(b) T. Umemoto, S. Ishihara, J. Am. Chem. Soc. 115 (1993) 2156–2164;
(c) T. Umemoto, Chem. Rev. 96 (1996) 1757–1777.
[11] I. Ruppert, J. Fluorine Chem. 14 (1979) 81–84.
[12] M. Janzen, Can. J. Chem. 55 (1977) 3031–3034.
[13] L.M. Yagupolskii, A.V. Matsnev, R.K. Orlova, Y.L. Yagupolskii, Abstract
of Papers, 18th International Symposium on Fluorine Chemistry, Bremen,
Germany, July 30–August 4, 2006, PM-Grafik-Design, Herstellung,
Wachtersbach, 2006, 150.
3.12. Typical procedure for synthesis of S-(trifluoromethyl)
arylhetarylsulfonium salts (14, 15)
An appropriate heterocycle (2.7 mmol) was added dropwise
to a solution of salt 13 (0.43 g, 1.32 mmol) in dichloromethane
(5 mL) at ꢀ60 8C. The reaction mixture was allowed to warm to
rt and stirred for 24 h at rt. Then the solvent was evaporated, and
the residue was purified by silica gel chromatography
(CH2Cl2:CH3CN, 8:1). Evaporation of solvent resulted in salts
14 and 15:
[14] N.V. Kondratenko, V.N. Movchun, L.M. Yagupolskii, J. Org. Chem. USSR
(Engl. Transl.) 25 (1989) 1005–1006.
[15] A. Haas, A. Waterfeld, C. Klare, G. Moller, N. Kondratenko, L. Yagu-
polskii, Chem. Ber. 128 (1995) 435–436.
[16] V. Movchun, A. Kolomeitsev, Y.L. Yagupolskii, J. Fluorine Chem. 70
(1995) 255–257.
[17] K. Muralidharan, R. Chakraborty, J.M. Shreeve, J. Fluorine Chem. 125
(2004) 1967–1968.
ꢃ (14): N-Metylpyrrole was used as starting heterocycle;
mixture a:b = 1:1, mp = 110–112 8C;1H NMR (CDCl3): d
3.88 (s, 3H), 4.12 (s, 3H), 6.62–7.61 (m, 6H), 8.21–8.63 (m,
8H). 19F NMR (CDCl3): ꢀ54,0 (s, 3F), ꢀ54.1 (s, 3F), ꢀ150.1
(s, 8F). Anal. calcd for C12H10BF7N2O2S: C, 36.92; H, 2.56;
N 7.18. Found: C, 37.18; H, 2.57; N, 7.20.
[18] (a) J. Jilek, J. Pomykacek, J. Holubek, E. Svatek, M. Ryska, Collect.
Czech. Chem. Commun. 49 (1984) 603–620;
(b) S. Montanari, C. Paradisi, G. Scorrano, J. Org. Chem. 56 (1991) 4274–
4279;
(c) H. Price, L. Stacy, J. Am. Chem. Soc. 68 (1946) 498–500.
[19] I.G. Maslennikov, A.N. Lavrent’ev, M.V. Lyubimova, Yu.I. Shvedova,
V.B. Lebedev, Zh. Obshch. Khim. 53 (1983) 2417.
[20] N.V. Kondratenko, O.A. Radchenko, L.M. Yagupolskii, J. Org. Chem.
USSR 20 (1984) 2051–2052 (Engl. Transl.).
ꢃ (15): Indole was used as starting heterocycle; mp = 164–
166 8C; 1H NMR (CDCl3): d 7.50 (t, 1H), 7.61 (t, 1H), 7.73