J. S. Yadav et al. / Tetrahedron Letters 50 (2009) 6029–6031
6031
Chem., Int. Ed. 2002, 41, 2596–2599; (c) Tornøe, C. W.; Christensen, C.; Meldal,
M. J. Org. Chem. 2002, 67, 3057–3064.
10. (a) Kolb, H. C.; Sharpless, K. B. Drug Discovery Today 2003, 8, 1128–1137; (b)
Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem. 2006,
51–68.
11. (a) Moorhouse, A. D.; Santos, A. M.; Gunaratnam, M.; Moore, M.; Neidle, S.;
Moses, J. E. J. Am. Chem. Soc. 2006, 128, 15972–15973; (b) Lee, L. V.; Mitchell, M.
L.; Huang, S.-J.; Fokin, V. V.; Sharpless, K. B.; Wong, C.-H. J. Am. Chem. Soc. 2003,
125, 9588–9589.
Cu(OTf)2
TMSN3
O
O
HO
Ph
+
Ph
OH
H
Cu(0)
R
O
O
Ph
Ph
N3
N
N
N
12. (a) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit, B.; Pyun,
J.; Frechet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew. Chem., Int. Ed. 2004, 43,
3928–3932; (b) Wu, P.; Malkoch, M.; Hunt, J. N.; Vestberg, R.; Kaltgrad, E.; Finn,
M. G.; Fokin, V. V.; Sharpless, K. B.; Hawker, C. J. Chem. Commun. 2005, 5775–
5777; (c) Rozkiewicz, D. I.; Janczewski, D.; Verboom, W.; Ravoo, B. J.;
Reinhoudt, D. N. Angew. Chem., Int. Ed. 2006, 45, 5292–5296.
13. (a) Speers, A. E.; Adam, G. C.; Cravatt, B. F. J. Am. Chem. Soc. 2003, 125,
4686–4687; (b) Speers, A. E.; Cravatt, B. F. Chem. Biol. 2004, 11, 535–546; (c)
Burley, G. A.; Gierlich, J.; Mofid, M. R.; Nir, H.; Tal, S.; Eichen, Y.; Carell, T. J.
Am. Chem. Soc. 2006, 128, 1398–1399; (d) Wang, Q.; Chan, T. R.; Hilgraf, R.;
Fokin, V. V.; Sharpless, K. B.; Finn, M. G. J. Am. Chem. Soc. 2003, 125, 3192–
3193.
14. (a) Feldman, A. K.; Colasson, B.; Fokin, V. V. Org. Lett. 2004, 9, 3897–3899; (b)
Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Eycken, E. V. Org. Lett. 2004, 6, 4223–
4225; (c) Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Org. Chem. 2004, 69, 2386–
2393; (d) Kacprzak, K. Synlett 2005, 943–946; (e) Yan, Z.-Y.; Zhao, Y.-B.; Fan,
M.-J.; Liu, W.-M.; Liang, Y.-M. Tetrahedron 2005, 61, 9331–9337; (f) Xie, F.;
Chittaboina, S.; Wang, Q. Tetrahedron Lett. 2005, 61, 2331–2336; (g) Zhao, Y.-B.;
Yan, Z.-Y.; Liang, Y.-M. Tetrahedron Lett. 2006, 47, 1545–1549; (h) Beckmann,
H. S. G.; Wittman, V. Org. Lett. 2007, 9, 1–4; (i) Aufort, M.; Herscovici, J.;
Bouhours, P.; Moreau, N.; Girard, C. Bioorg. Med. Chem. Lett. 2008, 18, 1195–
1198.
R
Scheme 2. A plausible reaction mechanism.
However, in the absence of either copper triflate or copper(0), the
reaction did not give the expected triazole even after long reaction
times (8–12 h). Both copper triflate and copper metal are essential
for the success of the reaction. The effect of various solvents such
as THF, 1,2-dimethoxyethane, and acetonitrile was studied in the
reaction of n-hexanal, benzyl alcohol, TMSN3, and phenylacetylene
under identical conditions. The corresponding product 5a was ob-
tained in 58%, 62%, and 75% yields, respectively. Thus, acetonitrile
was found to give the best results. However, this method failed to
produce the 1,2,3-triazoles from phenols and aromatic aldehydes.
The reaction was successful only with aliphatic aldehydes and
alcohols. The scope and generality of this process is illustrated in
Table 1.15 The reaction may proceed via acetal formation followed
by azidation and a subsequent [3+2] cycloaddition as depicted in
Scheme 2.
15. General procedure: To a mixture of n-hexanal (120 mg, 1.2 mmol), benzyl
alcohol (108 mg, 1 mmol), and copper(II) triflate (18 mg, 5 mol %) in
acetonitrile (5 mL) was added TMSN3 (0.26 mL, 2.0 mmol) at 0 °C under
nitrogen atmosphere and allowed to warm to room temperature. The reaction
mixture was stirred until the complete consumption of alcohol. Then
phenylacetylene (102 mg, 1 mmol) and Cu(0) powder (Aldrich-7440-50-8,
65 mg, 1 mmol) were added to the reaction mixture and stirred for the
specified time (Table 1). The reaction mixture was then filtered through Celite
and extracted with ethyl acetate (2 Â 10 mL). The combined organic layers
were dried over anhydrous Na2SO4. Removal of the solvent followed by
purification on silica gel (Merck, 100–200 mesh, ethyl acetate-hexane, 3:97)
gave the pure triazole, which was characterized by IR, NMR, and mass
spectroscopy. Spectral data for selected compounds. Compound 5a: 1-[1-
(Benzyloxy)hexyl]-4-phenyl-1H-1,2,3-triazole: Solid, mp 84–86 °C. IR (KBr):
mmax 3446, 2923, 2855, 1727, 1635, 1459, 1350, 1219, 1095, 1033, 762,
In summary, we have developed a novel approach for the prep-
aration of a-alkoxytriazoles via a four-component reaction of alde-
hyde, alcohol, azide, and alkyne. In addition to its simplicity and
mild reaction conditions, this method provides a wide range of
a
-alkoxytriazoles in good yields in a single-step operation.
Acknowledgment
G.M.R. thanks CSIR, New Delhi, for the award of a fellowship.
References and notes
695 cmÀ1 1H NMR (200 MHz, CDCl3): d 7.80–7.86 (m, 3H), 7.45–7.24 (m, 8H),
.
5.75 (t, J = 6.2 Hz, 1H), 4.41 (q, J = 19.5 Hz, 2H), 1.89–2.19 (m, 2H), 1.22–1.30
(m, 6H), 0.86 (t, J = 6.2 Hz, 3H). 13C NMR (75 MHz, CDCl3): d 148.4, 136.2, 130.5,
128.8, 128.5, 128.2, 128.1, 125.7, 116.2, 89.1, 70.8, 35.9, 31.0, 24.2, 22.3, 13.9,
13.8. ESI-MS: m/z: 336 (M+H)+. HRMS calcd for C21H25N3ONa: 358.1895.
Found: 358.1913. Compound 5b: 1-(1-(Benzyloxy)propyl)4-hexyl-1H-1,2,3-
1. (a) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating, T. A.
Acc. Chem. Res. 1996, 29, 123; (b) Terret, N. K.; Gardner, M.; Gordon, D. W.;
Kobylecki, R. J.; Steel, J. Tetrahedron 1995, 51, 8135.
triazole: Liquid, IR (neat): mmax 3445, 2925, 2856, 1629, 1113 cmÀ1 1H NMR
.
2. Zhu, J.; Bienaymé, H. Multicomponent Reactions; Wiley: Weinheim, 2005.
3. Doemling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3169–3210.
4. Banfi, L.; Riva, R. Org. React. 2005, 65, 1–140.
5. Bienaymé, H.; Hulme, C.; Oddon, G.; Schmitt, P. Chem. Eur. J. 2000, 6, 3321–
3329.
(300 MHz, CDCl3): d 7.36 (s, 1H), 7.22–7.31 (m, 5H), 5.58–5.62 (m, 1H), 4.29–
4.39 (q, J = 18.1 Hz, 2H), 2.69 (t, J = 7.5 Hz, 2H), 1.85–2.14 (m, 4H), 1.27–1.67
(m, 6H), 0.89 (t, J = 7.5 Hz, 6H). 13C NMR (75 MHz, CDCl3): d 148.5, 141.2, 127.9,
127.2, 127.1, 114.5, 90.6, 72.7, 38.9, 36.1, 31.6, 31.4, 20.4, 19.0, 15.2, 14.2. ESI-
MS: m/z: 302 (M+H)+. HRMS calcd for C18H27N3ONa: 324.2052, Found:
324.2078. Compound 5c: 1-[1-(Allyloxy)-2-phenylethyl]-4-pentyl-1H-1,2,3-
6. (a) Wamhoff, H.. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Rees,
C. W., Eds.; Pergamon: Oxford, 1984; Vol. 5, p 669; (b) Im, C.; Maiti, S. N.;
Micetich, R. G.; Daneshtalab, M.; Atchison, K.; Phillips, O. A. J. Antibiot. 1994, 47,
1030–1040; (c) Velazquez, S.; Alvarez, R.; Perez, C.; Gago, F.; De, C.; Balzarini, J.;
Camaraza, M. J. Antivir. Chem. Chemother. 1998, 9, 481–489.
7. (a) Fan, W. Q.; Katritzky, A. R.. In Comprehensive Heterocyclic Chemistry II;
Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Elsevier Science: Oxford, 1996;
Vol. 4, pp 1–126; (b) Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn, M.
R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.; Grega, K. C.; Hester, J. B.;
Hutchinson, D. K.; Morris, J.; Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J.
C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953–970.
8. (a) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1963, 2, 565–598; (b) Huisgen, R. In
1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; pp
1–176; (c) Padwa, A.. In Comprehensive Organic Synthesis; Trost, B. M., Ed.;
Pergamon: Oxford, 1991; Vol. 4, pp 1069–1109.
triazole: Liquid, IR (neat):
m
max 3446, 2930, 2858, 2362, 1717, 1646, 1500, 1457,
1372, 1246, 1218, 1035, 756, 700 cmÀ1
.
1H NMR (200 MHz, CDCl3): d 8.06 (s,
1H), 7.28–7.09 (m, 5H), 5.91–5.98 (m, 1H), 5.58–5.77 (m, 1H), 5.12–5.22 (m,
2H), 3.78–3.99 (m, 2H), 3.17–3.38 (m, 2H), 3.08 (t, J = 7.0 Hz, 2H), 1.68–1.88 (m,
2H), 1.23–1.45 (m, 4H), 1.03 (t, J = 7.0 Hz, 3H). 13C NMR (75 MHz, CDCl3): d
148.0, 134.1, 132.1, 129.5, 128.5, 127.5, 123.0, 118.9, 89.9, 70.3, 42.4, 41.5, 30.9,
29.7, 17.4, 13.8. ESI-MS: m/z: 300 (M+H)+. HRMS calcd for C18H25N3ONa:
322.1895, Found: 322.1927. Compound 5k: 1-[1-(Adamantanyloxy)hexyl]-4-
(4-phenyl)-phenyl-1H-1,2,3-triazole: Semi-solid, IR (neat): mmax 3256, 2929,
2853, 1469, 1441, 1342, 1253, 1006, 944, 903, 760 cmÀ1 1H NMR (300 MHz,
.
CDCl3): d 7.87–8.07 (m, 5H), 7.37–7.51 (m, 5H), 5.65–5.70 (m, 1H), 4.00–4.09
(m, 1H), 1.04–1.69 (m, 22H), 0.77–0.83 (t, J = 6.2 Hz, 3H). 13C NMR (75 MHz,
CDCl3): d 157.4, 130.0, 129.5, 126.6, 125.7, 125.4, 90.4, 75.7, 69.3, 35.2, 32.4,
31.9, 31.4, 31.0, 30.9, 30.1, 29.7, 29.3, 24.5, 24.3, 24.2, 23.9, 23.8, 23.7, 23.6,
23.3, 23.2, 22.9, 22.8, 22.6, 21.0, 20.9, 14.2. ESI-MS: m/z: 456 (M+H)+. HRMS
calcd for C30H37N3ONa: 478.2834, Found: 478.2856.
9. (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–
2021; (b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.