12 to provide dihydropyran 13 in 88% yield. The use of tert-
butylhydroperoxide instead of CHP resulted in a low yield
of 13. Conversion to epoxide 14 was performed by selective
tosylation17 and base treatment (80% yield, two steps). The
stereochemistry of 14 was confirmed by an NOE as shown.
Subsequent reaction with allylmagnesium chloride and CuI
provided, after acylation, acetate 15 in 93% yield (two steps).
Chemoselective dihydroxylation of the terminal olefin was
best accomplished under the influence of AD-mix ꢀ, cat.
OsO4, and (DHQD)2PHAL (77% after one recycling).
Scheme 3. Synthesis of Thiol Ester 5
18
Oxidative cleavage of the resultant diol with NaIO4/SiO2
followed by the Wittig reaction produced an enoate (96%
for the two steps, >20:1 E/Z), which was then reduced with
DIBALH to afford allylic alcohol 16 (98%). The asymmetric
epoxidation/5-exo cyclization sequence proceeded efficiently
to give diol 17 in 88% yield (>10:1 dr). The vic-diol moiety
of 17 was converted into methyl ketone in a three-step
sequence, including NaIO4 oxidation, alkynylation with
Ohira-Bestmann reagent,19 and hydration of the terminal
alkyne.20 Ketone 18 thus obtained was transformed to the
corresponding enol triflate (KHMDS, PhNTf2, 79%), which
was treated with (Me3Sn)2, LiCl, and Pd(PPh3)4 (THF, 70
°C)21 to furnish the desired vinyl stannane 4 in 90% yield.22
The synthesis of thiol ester partner 5 commenced with a
(4) Furukawa, K.-I.; Sakai, K.; Watanabe, S.; Maruyama, K.; Murakami,
M.; Yamaguchi, K.; Ohizumi, Y. J. Biol. Chem. 1993, 268, 26026–26031.
(5) Matsunaga, K.; Nakatani, K.; Murakami, M.; Yamaguchi, K.;
Ohizumi, Y. J. Pharmacol. Exp. Ther. 1999, 291, 1121–1126.
(6) Yasuda, M.; Nakatani, K.; Matsunaga, K.; Murakami, M.; Momose,
K.; Ohizumi, Y. Eur. J. Pharmacol. 1998, 346, 119–123.
(7) Mizuno, K.; Nakahata, N.; Ito, E.; Murakami, M.; Yamaguchi, K.;
Ohizumi, Y. J. Pharm. Pharmacol. 1998, 50, 645–648.
fragment coupling of alkyne 6 (a 1.2:1 mixture of epimers)23
and the previously described aldehyde 7,3 which is available
in 14 steps from (-)-dimenthyl fumarate. Thus, the reaction
of 7 with 6 (2 equiv) under Carreira asymmetric alkynylation
conditions (Zn(OTf)2, (+)-N-methyl ephedrine, Et3N, toluene,
room temperature)13 gave the desired alcohol24 with an ap-
proximately 9:1 diastereoselectivity (Scheme 3). Subsequent
deprotection of the benzylidene acetal by treatment with PPTS
afforded triol 19 in 82% yield for the two steps. At this stage,
the undesired diastereomer at C31 could be removed by column
chromatography on silica gel. After Lindlar reduction of the
triple bond, a three-step sequence of protective group manipula-
tions led to primary alcohol 20 in 72% overall yield. Oxidation
of 20 to the corresponding carboxylic acid (IBX, DMSO; then
NaClO2) and esterification with p-tolylthiol (PyBOP, i-Pr2NEt2,
(8) Abe, M.; Inoue, D.; Matsunaga, K.; Ohizumi, Y.; Ueda, H.; Asano,
T.; Murakami, M.; Sato, Y. J. Cell. Physiol. 2002, 190, 109–116.
(9) Fujiwara and co-workers have reported their synthetic studies for
the stereochemical assignment of goniodomin A, see: (a) Fujiwara, K.; Naka,
J.; Katagiri, T.; Sato, D.; Kawai, H.; Suzuki, T. Bull. Chem. Soc. Jpn. 2007,
80, 1173–1186. (b) Katagiri, T.; Fujiwara, K.; Kawai, H.; Suzuki, T.
Tetrahedron Lett. 2008, 49, 233–237. (c) Katagiri, T.; Fujiwara, K.; Kawai,
H.; Suzuki, T. Tetrahedron Lett. 2008, 49, 3242–3247.
(10) Wittenberg, R.; Srogl, J.; Egi, M.; Liebeskind, L. S. Org. Lett. 2003,
5, 3033–3035. (b) Li, H.; Yang, H.; Liebeskind, L. S. Org. Lett. 2008, 10,
4375–4378.
(11) For a review, see: Prokopcova´, H.; Kappe, C. O. Angew. Chem.,
Int. Ed. 2009, 48, 2276–2286.
(12) For applications of Liebeskind-Srogl coupling to natural products
synthesis, see: (a) Morita, A.; Kuwahara, S. Org. Lett. 2006, 8, 1613–1616.
(b) Yang, H.; Liebeskind, L. S. Org. Lett. 2007, 9, 2993–2995.
(13) (a) Frantz, D. E.; Fa¨ssler, R.; Carreira, E. M. J. Am. Chem. Soc.
2000, 122, 1806–1807. (b) Frantz, D. E.; Fa¨ssler, R.; Tomooka, C. S.;
Carreira, E. M. Acc. Chem. Res. 2000, 33, 373–381. (c) Sasaki, H.; Boyall,
D.; Carreira, E. M. HelV. Chim. Acta 2001, 84, 964–971. (d) Boyall, D.;
Frantz, D. E.; Carreira, E. M. Org. Lett. 2002, 4, 2605–2606.
(14) (a) Ramachandran, P. V.; Prabhudas, B.; Chandra, J. S.; Reddy,
M. V. R. J. Org. Chem. 2004, 69, 6294–6304. (b) Huang, H.; Mao, C.;
Jan, S.-T.; Uckun, F. M. Tetrahedron Lett. 2000, 41, 1699–1702. (c) Bonini,
C.; Chiummiento, L.; Pullez, M.; Solladie, G.; Colobert, F. J. Org. Chem.
2004, 69, 5015–5022.
(21) Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan, K.-S.; Faron,
K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray, C. K. J.
Org. Chem. 1986, 51, 277–279.
(22) For stereochemical assignment of compound 4, see Supporting
Information.
(23) Alkyne 6 was readily available in three steps from (S)-glycidol:
(1) trimethylsilylacetylene, n-BuLi, BF3·OEt2, THF, -78 to 0 °C; (2)
PhCH(OMe)2, cat. CSA, CH2Cl2; (3) K2CO3, MeOH, 81% yield for the
three steps.
(24) The stereochemistry of the newly generated stereogenic center at
C31 was equivocally confirmed by conversion to the known compound A3
by a four-step sequence: (1) Ac2O, Et3N, DMAP, CH2Cl2; (2) PPTS, EtOH;
(3) TBSOTf, 2,6-lutidine, CH2Cl2; (4) DIBALH, CH2Cl2.
(15) (a) Ando, K. Tetrahedron Lett. 1995, 36, 4105–4108. (b) Ando,
K. J. Org. Chem. 1997, 62, 1934–1939.
(16) Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.;
Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780.
(17) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.;
Pawlak, J. M.; Vaidyanathan, R. Org. Lett. 1999, 1, 447–450.
(18) Zhong, Y.-L.; Shing, T. K. M. J. Org. Chem. 1997, 62, 2622–
2624.
(19) (a) Ohira, S. Synth. Commun. 1989, 19, 561–564. (b) Muller, S.;
Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521–522.
(20) Larock, R. C.; Leong, W. W. In ComprehensiVe Organic Synthesis;
Trost, B. M., Flemming, I., Semmelhack, M. F., Eds.; Pergamon: Oxford,
UK, 1991; Vol. 4, pp 269-327.
5276
Org. Lett., Vol. 11, No. 22, 2009