S. PU, W. LIU AND W. MIAO
thienyl-H), 6.89 (d, 1H, J ¼ 7.6 Hz, phenyl-H); 13C NMR (400 MHz,
CDCl3): d 14.53, 15.00, 55.59, 111.8, 121.0, 121.8, 124.8, 127.9,
128.7, 130.1, 131.5, 136.6, 137.5, 139.7, 141.4, 155.6; IR (n, KBr,
cmꢁ1): 739, 764, 825, 855, 893, 983, 1049, 1115, 1191, 1273, 1336,
1442, 1487, 1630, 2919.
[11] K. Higashiguchi, K. Matsuda, N. Tanifuji, M. Irie, J. Am. Chem. Soc.
2005, 127, 8922–8923.
[12] J.-P. Malval, I. Gosse, J.-P. M. Orand, R. Lapouyade, J. Am. Chem. Soc.
2002, 124, 904–905.
[13] H. Tian, S. Wang, Chem. Commun. 2007, 781–792.
[14] K. Yumto, M. Irie, K. Matsuda, Org. Lett. 2008, 10, 2051–2054.
[15] T. Yamaguchi, K. Nomiyama, M. Isayama, M. Irie, Adv. Mater. 2004, 16,
643–645.
[16] M. Irie, K. Sakemura, M. Okinaka, K. Uchida, J. Org. Chem. 1995, 60,
8305–8309.
1-(2,5-Dimethyl-3-thienyl)-2-[2-methyl-5-(3-methoxylphenyl)-3-thi-
enyl]perfluorocyclopentene (2o)
[17] K. Uchida, T. Matsuoka, S. Kobatake, T. Yamaguchi, M. Irie, Tetrahedron
2001, 57, 4559–4565.
[18] S. Z. Pu, T. S. Yang, J. K. Xu, L. Shen, G. Z. Li, Q. Xiao, B. Chen,
Tetrahedron 2005, 61, 6623–6629.
[19] K. Morimitsu, S. Kobatake, M. Irie, Tetrahedron 2004, 45, 1155–1158.
[20] K. Morimitsu, K. Shibata, S. Kobatake, M. Irie, J. Org. Chem. 2002, 67,
4574–4578.
[21] S. Takami, M. Irie, Tetrahedron 2004, 60, 6155–6161.
[22] S. Z. Pu, C. H. Zheng, Z. G. Le, G. Liu, C. B. Fan, Tetrahedron 2008, 64,
2576–2585.
[23] S. Z. Pu, C. B. Fan, W. J. Miao, G. Liu, Tetrahedron 2008, 64, 9464–9470.
[24] C. H. Zheng, S. Z. Pu, J. K. Xu, M. B. Luo, D. C. Huang, L. Shen,
Tetrahedron 2007, 63, 5437–5449.
[25] S. Z. Pu, T. S. Yang, J. K. Xu, B. Chen, Tetrahedron Lett. 2006, 47,
3167–3171.
Compound 2o was prepared by a method similar to that used for
1o and obtained as solid in 48% yield. MS m/z (Mþ) 487.05; Calcd
for C23H18F6OS2 (%): Calcd C, 56.55; H, 3.71. Found C, 56.99; H,
1
3.74; H NMR (400 MHz, CDCl3): d 1.80 (s, 3H, —CH3), 1.86 (s, 3H,
—CH3), 2.36 (s, 3H, —CH3), 3.77 (s, 3H, —CH3), 6.65 (s, 1H,
thienyl-H), 6.77 (d, 2H, J ¼ 7.8 Hz, phenyl-H), 6.97 (s, 1H, thienyl-H),
7.05 (d, 1H, J ¼ 7.6 Hz, phenyl-H), 7.19 (t, 1H, J ¼ 7.6 Hz, phenyl-H);
13C NMR (400 MHz, CDCl3): d 14.20, 14.35, 15.02, 55.26, 111.3,
113.3, 118.2, 122.8, 124.7, 126.0, 129.8, 134.7, 137.7, 139.7, 141.2,
141.9, 160.1; IR (n, KBr, cmꢁ1): 745, 776, 823, 836, 892, 977, 1051,
1108, 1189, 1273, 1336, 1445, 1492, 1571, 1594, 2924.
[26] C. B. Fan, S. Z. Pu, G. Liu, T. S. Yang, J. Photochem. Photobiol. A 2008,
194, 333–343.
[27] C. B. Fan, S. Z. Pu, G. Liu, T. S. Yang, J. Photochem. Photobiol. A 2008,
197, 415–425.
1-(2,5-Dimethyl-3-thienyl)-2-[2-methyl-5-(4-methoxylphenyl)-3-thi-
enyl]perfluorocyclopentene (3o)
[28] S. Z. Pu, L. S. Yan, Z. D. Wen, G. Liu, L. Shen, J. Photochem. Photobiol. A
2008, 196, 84–93.
[29] S. Z. Pu, T. S. Yang, J. K. Xu, B. Chen, Tetrahedron Lett. 2006, 47,
6473–6477.
[30] K. Shibata, S. Kobatake, M. Irie, Chem. Lett. 2001, 618–619.
[31] T. S. Yang, S. Z. Pu, B. Chen, J. K. Xu, Can. J. Chem. 2007, 85, 12–20.
[32] S. Z. Pu, G. Liu, G. Z. Li, R. J. Wang, T. S. Yang, J. Mol. Struct. 2007, 833,
23–29.
[33] F. Sun, F. S. Zhang, H. B. Cuo, X. H. Zhou, R. J. Wang, F. Q. Zhao,
Tetrahedron 2003, 59, 7615–7621.
Compound 3o was prepared by a method similar to that used for
1o and obtained as solid in 51% yield. MS m/z (Mþ) 487.03; Calcd
for C23H18F6OS2 (%): Calcd C, 56.55; H, 3.71. Found C, 57.17; H,
1
3.85; H NMR (400 MHz, CDCl3): d 1.80 (s, 3H, —CH3), 1.83 (s, 3H,
—CH3), 2.34 (s, 3H, —CH3), 3.75(s, 3H, —CH3), 6.65 (s, 1H,
thienyl-H), 6.83 (d, 2H, J ¼ 7.6 Hz, phenyl-H), 7.05 (s, 1H, thienyl-H),
7.37 (d, 2H, J ¼ 8.0 Hz, phenyl-H); 13C NMR (400 MHz, CDCl3): d
14.21, 14.27, 15.02, 55.37, 114.3, 121.5, 121.8, 124.6, 124.7, 125.9,
126.3, 127.9, 137.6, 139.7, 140.1, 142.0, 159.5; IR (n, KBr, cmꢁ1): 727,
819, 888, 984, 1049, 1103, 1187, 1265, 1336, 1440, 1489, 1550,
1622, 2922.
[34] S. Z. Pu, F. S. Luo, R. J. Wang, T. S. Yang, Acta Cryst. 2006, E62,
o1194–o1196.
[35] Z. X. Li, L. Y. Liao, W. Sun, C. H. Xu, C. Zhang, C. J. Fang, C. H. Yan, J. Phys.
Chem. C 2008, 112, 5190–5196.
[36] A. Takata, S. Yokojima, H. Nakagawa, Y. Matsuzawa, A. Murakami, S.
Nakamura, M. Irie, K. Uchida, J. Phys. Org. Chem. 2007, 20, 998–1006.
[37] M. Morimoto, S. Kobatake, M. Irie, Chem. Eur. J. 2003, 9, 621–627.
[38] T. S. Yang, S. Z. Pu, C. B. Fan, G. Liu, Spectrochim. Acta A 2008, 70,
1065–1072.
[39] K. Kasatani, S. Kambe, M. Irie, J. Photochem. Photobiol. A 1999, 122,
11–15.
[40] B. Gorodetsky, H. D. Samachetty, R. L. Donkers, M. S. Workentin, N. R.
Branda, Angew. Chem. Int. Ed. 2004, 43, 2812–2815.
[41] S. Z. Xiao, T. Yi, F. Y. Li, C. H. Huang, Tetrahedron Lett. 2005, 46,
9009–9012.
Acknowledgements
This work was supported by the Project of National Natural
Science Foundation of China (20564001), the Key Scientific Pro-
ject from Education Ministry of China (208069), the Project of
Jiangxi Youth Scientist, and the Science Funds of the Education
Office of Jiangxi, China (GJJ08365).
[42] S. Z. Xiao, T. Yi, Y. F. Zhou, Q. Zhao, F. Y. Li, C. H. Huang, Tetrahedron
2006, 62, 10072–10078.
[43] Z. G. Zhou, H. Yang, M. Shi, S. Z. Xiao, F. Y. Li, T. Yi, C. H. Huang,
ChemPhysChem 2007, 8, 1289–1292.
REFERENCES
[1] H. Du¨rr, H. Bouas-Laurent, Photochromism: Molecules and Systems,
Elsevier, Amsterdam, 1990.
[44] Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, J. Am. Chem. Soc.
2004, 126, 3357–3367.
[2] M. Irie, Chem. Rev. 2000, 100, 1685–1716.
[3] H. Tian, S. J. Yang, Chem. Soc. Rev. 2004, 33, 85–97.
[4] H. Tian, Y. L. Feng, J. Mater. Chem. 2008, 18, 1617–1622.
[5] A. Bianco, C. Bertarelli, J. F. Rabolt, G. Zerbi, Chem. Mater. 2005, 17,
869–874.
[6] S. Z. Pu, F. S. Zhang, J. K. Xu, L. Shen, Q. Xiao, B. Chen, Mater. Lett. 2006,
60, 485–489.
[7] S. Z. Pu, H. H. Tang, B. Chen, J. K. Xu, W. H. Huang, Mater. Lett. 2006, 60,
3553–3557.
[45] Y. Liu, N. Zhang, Y. Chen, L. H. Wang, Org. Lett. 2007, 9, 315–318.
[46] Y. Suzuki, K. Yokoyama, J. Am. Chem. Soc. 2005, 127, 17799–\.
[47] M. Irie, T. Fukaminato, T. Sasaki, N. Tamai, T. Kawai, Nature 2002, 420,
759–760.
[48] L. Giordano, T. M. Jovin, M. Irie, E. A. Jares-Erijman, J. Am. Chem. Soc.
2002, 124, 7481–7489.
[49] S. Z. Pu, G. Liu, L. Shen, J. K. Xu, Org. Lett. 2007, 9, 2139–2142.
[50] Y. L. Feng, Y. L. Yan, S. Wang, W. H. Zhu, S. X. Qian, H. Tian, J. Mater.
Chem. 2006, 16, 3685–3692.
[8] S. Z. Pu, T. S. Yang, B. L. Yao, Y. L. Wang, M. Lei, J. K. Xu, Mater. Lett.
2007, 61, 855–859.
[51] S. F. Yan, V. N. Belov, M. L. Bossi, S. W. Hell, Eur. J. Org. Chem. 2008,
2531–2538.
[9] D. Dulic, T. Kudernac, A. Puzys, B. L. Feringa, B. J. van Wees, Adv. Mater.
2007, 19, 2898–2902.
[52] S. Z. Pu, J. K. Xu, L. Shen, Q. Xiao, T. S. Yang, G. Liu, Tetrahedron Lett.
2005, 46, 871–875.
[10] V. A. Barachevsky, Y. P. Strokach, A. Puankov, M. M. Krayushkin, J. Phys.
Org. Chem. 2007, 20, 1007–1021.
[53] H. Tian, B. Z. Chen, H. Y. Tu, K. Mu¨llen, Adv. Mater. 2002, 14, 918–
923.
Copyright ß 2009 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2009, 22 954–963