workers,5c wherein peptides containing N-alkylaminooxy
groups are glycosylated in mildly acidic aqueous solutions
with native, completely unprotected reducing sugars, is
particularly attractive. The two key advantages are that
attached sugars maintain cyclic conformations and that no
synthetic sugar chemistry is required. Previously, we have
synthesized N-methylaminooxy-containing amino acids suit-
able for Boc or Fmoc solid-phase peptide synthesis.9 These
amino acids were successfully incorporated into peptides,
and their chemoselective glycosylation yielded neoglyco-
peptides. We now extend this N-alkylaminooxy strategy to
the synthesis of glycopeptoids.
Peptoids are a unique class of peptide mimics based on
oligoglycine scaffolding.10 While their sequence of backbone
atoms is identical to that of a peptide, non-natural N-
substituents render them protease-stable.11 Using submono-
mer protocols developed by Zuckermann et al.,12 diverse
oligopeptoids are readily synthesized with a variety of
different primary amines and bromoacetic acid (Figure 1);
able pharmacological properties has fueled interest in pep-
toids, and many examples of biologically active peptoids
have been reported recently.14
The advantages of peptoids can be carried to their
glycosylated counterparts, glycopeptoids, which have great
potential both as glycopeptide mimics15 and as novel
carbohydrate-presenting materials. Glycopeptoids have been
synthesized by different strategies.16 Herein, we report the
synthesis of glycopeptoids by the chemoselective ligation
of N-methylaminooxy-containing peptoid oligomers with
unprotected reducing sugars. In addition, we report that
microwave irradiation greatly enhances N-alkylaminooxy
glycosylation reactions. Thus, we present a simple and
practical strategy for the rapid generation of a wide range
of glycopeptoids.
The synthesis of N-methylaminooxy-containing peptoid
oligomers was enabled by designing and making the N-
methylaminooxy submonomer 3 (Scheme 1). Its synthesis
Scheme 1. Synthesis of N-Methylaminooxy Submonomer 3
was accomplished in two steps and 53% overall yield.
N-Boc,N-methylhydroxylamine, 1,17 was deprotonated with
sodium hydride and used to monoalkylate 3-iodo-1-bro-
mopropane to produce 2. Conversion of the chloride to an
azide followed by reduction with triphenylphosphine then
afforded the desired amine 3.
Figure 1. (A) Structures of an R-peptide and a peptoid, and (B)
peptoid submonomer synthesis protocol (DIC ) N,N′-diisopropy-
lcarbodiimide).
The protected N-methylaminooxy submonomer 3 was
readily incorporated into oligopeptoids using standard solid-
phase peptoid synthesis procedures, and no distinct side
products were observed. In this study we synthesized four
different model peptoids (4 - 7, Figure 2; see Supporting
Information for synthetic details).
therefore, rapid and convenient access to a wide array of
peptoid sequences is possible.13 The combination of ease of
synthesis, ability to display diverse functionality, and favor-
(9) (a) Carrasco, M. R.; Nguyen, M. J.; Burnell, D. R.; MacLaren, M. D.;
Hengel, S. M. Tetrahedron Lett. 2002, 43, 5727–5729. (b) Carrasco, M. R.;
Brown, R. T.; Serafimona, I. M.; Silva, O. J. Org. Chem. 2003, 68, 195–
197. (c) Carrasco, M. R.; Brown, R. T. J. Org. Chem. 2003, 68, 8853–
8858. (d) Carrasco, M. R.; Brown, R. T.; Doan, V. H.; Kandel, S. M.; Lee,
F. C. Biopolymers 2006, 84, 414–420.
(14) (a) Chongsiriwatana, N. P.; Patch, J. A.; Czyzewski, A. M.; Dohm,
M. T.; Ivankin, A.; Gidalevitz, D.; Zuckermann, R. N.; Barron, A. E. Proc.
Natl. Acad. Sci. U.S.A. 2008, 105, 2794–2799. (b) Brown, N. J.; Wu, C. W.;
Seurynck-Servoss, S. L.; Barron, A. E. Biochemistry 2008, 47, 1808–1818.
(c) Murphy, J. E.; Uno, T.; Hamer, J. D.; Cohen, F. E.; Dwarki, V.;
Zuckermann, R. N. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2794–2799.
(15) Marcaurelle, L. A.; Bertozzi, C. R. Chem.sEur. J. 1999, 5, 1384–
1390.
(10) Simon, R. J.; Kania, R. S.; Zuckermann, R. N.; Huebner, V. D.;
Jewell, D. A.; Banville, S.; Ng, S.; Wang, L.; Rosenberg, S.; Marlowe,
C. K.; Spellmeyer, D. C.; Tan, R.; Frankel, A. D.; Santi, D. V.; Cohen,
F. E.; Bartlett, P. A. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 9367–9371.
(11) Miller, S. M.; Simon, R. J.; Ng, S.; Zuckermann, R. N.; Kerr, J. M.;
Moos, W. H. Drug DeV. Res. 1995, 35, 20–32.
(16) (a) Saha, U. K.; Roy, R. Tetrahedron Lett. 1995, 36, 3635–3638.
(b) Yuasa, H.; Kamata, Y.; Kurono, S.; Hashimoto, H. Bioorg. Med. Chem.
Lett. 1998, 8, 2139–2144. (c) Dechantsreiter, M. A.; Burkhart, F.; Kessler,
H. Tetrahedron Lett. 1998, 39, 253–254. (d) Burger, K.; Boettcher, C.;
Radics, G.; Hennig, L. Tetrahedron Lett. 2001, 42, 3061–3063. (e) Norgren,
A. S.; Budke, C.; Majer, Z.; Heggemann, C.; Koop, T.; Sewald, N. Synthesis
2009, 3, 488–494. (f) Comegna, D.; Riccardis, F. D. Org. Lett. 2009, 11,
3898–3901.
(12) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J. Am.
Chem. Soc. 1992, 114, 10646–10647.
(13) (a) Zuckermann, R. N.; Martin, E. J.; Spellmeyer, D. C.; Stauber,
G. B.; Shoemaker, K. R.; Kerr, J. M.; Figliozzi, G. M.; Goff, D. A.; Siani,
M. A.; Simon, R. J.; Banville, S. C.; Brown, E. G.; Wang, L.; Richter,
L. S.; Moos, W. H. J. Med. Chem. 1994, 37, 2678–2685. (b) Nguyen, J. T.;
Turck, C. W.; Cohen, F. E.; Zuckermann, R. N.; Lim, W. A. Science 1998,
282, 2088–2092.
(17) (a) House, H. O.; Richey, F. A. J. Org. Chem. 1969, 34, 1430–
1439. (b) Freeman, J. P.; Lillwitz, L. D. J. Org. Chem. 1970, 35, 3107–
3110.
Org. Lett., Vol. 11, No. 22, 2009
5211