J. Kanada et al. / Tetrahedron Letters 50 (2009) 6196–6199
6199
P(OMe)2
O
References and notes
H-P(O)(OMe)2
+
N
N
others
+
+
1. Review: (a) Tamao, K.; Kobayashi, K.; Ito, Y. Synlett 1992, 539; (b) Ojima, I.;
Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635; (c)
Montgomery, J. Acc. Chem. Res. 2000, 33, 467; (d) Aubert, C.; Buisine, O.;
Malacria, M. Chem. Rev. 2002, 102, 813; (e) Zeni, G.; Larock, R. C. Chem. Rev.
2004, 104, 2285; (f) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644.
2. For selected examples: (a) Singidi, R. R.; RajanBabu, T. V. Org. Lett. 2008, 10,
3351. and references cited therein; (b) Kim, H.; Goble, S. D.; Lee, C. J. Am Chem.
Soc. 2007, 129, 1030; (c) Hirabayashi, T.; Okimoto, Y.; Saito, A.; Morita, M.;
Sakaguchi, S.; Ishii, Y. Tetrahedron 2006, 62, 2231; (d) Liu, C. Ph.D. thesis, Duke
University, 2006.; (e) Goble, S. D. Ph.D. thesis, Princeton University, 2006.; (f)
Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 1467; (g) Suginome, M.; Matsuda, T.;
Ito, Y. Organometallics 1998, 17, 5233; (h) Onozawa, S.-y.; Hatanaka, Y.; Tanaka,
M. Chem. Commun. 1997, 1229; (i) Onozawa, S.-y.; Hatanaka, Y.; Choi, N.;
Tanaka, M. Organometallics 1997, 16, 5389.
N
9bC 17% (isolated)
(MeO)2(O)P
4bC 32% (NMR)
[N = N(p-Ts)]
D
D
D-P(O)(OMe)2
+
N
H-P(O)(OMe)2
+
N
D
D
2C-d1
2C
Ha
1b-d2
1b-d2
Hb
D content
D content
1.60D
N
P(O)(OMe)2
Ha + Hb
a + Hb
He
1.10D
0.42D
1.19D
H
Hc
Hc
0.76D
1.90D
Hc
Hd
Hd + He
Hd + He
4bC
3. (a) Tanaka, M. Top. Curr. Chem. 2004, 232, 25. and references cited therein; (b)
Han, L.-B.; Zhao, C.-Q.; Tanaka, M. WO 2002/064604.; (c) Han, L.-B.; Zhang, C.;
Tanaka, M. WO 2003/097654.
Scheme 6.
4. (a) Nune, S. K.; Tanaka, M. Chem. Commun. 2007, 2858; (b) Dobashi, N.; Fuse, K.;
Hoshino, T.; Kanada, J.; Kashiwabara, T.; Kobata, C.; Nune, S. K.; Tanaka, M.
Tetrahedron Lett. 2007, 48, 4669.
A third option is the formation of 4, which must have come
from partial hydrogenation of 0. The following observation appears
relevant to the provenance of the hydrogen required for the partial
hydrogenation. While we were searching for other byproducts un-
der different conditions, we came across the formation of
alkynylphosphonate 9bC (Scheme 6) and 4bC in 17% NMR and
32% isolated yields, respectively, along with traces of other uniden-
tified products [Pd(PPh3)4 3 mol %, THF, 68 °C, 48 h]. Given that the
real yield of the alkynylphosphonate (by NMR) is much higher than
the isolated yield, for example, ꢀ30%, it is reasonable to assume
that the hydrogen has come, at least partly, from the alkynylphos-
phonate formation process. Deuterium-labeling experiments to
look into the possibility under identical conditions (Scheme 6) ap-
pear to support the assumption. Thus, the reaction of 1b-d2 with
2C and also the reaction of 1b-d2 with 2C-d1 furnished partially
deuterated 4bC. The D content at relevant positions in 4bC (by
1H NMR spectroscopy) agrees fairly well with the calculated value,
if we allow possible H–D scrambling with a potential H source (sol-
vent, moisture) present in the reaction system.14 The failure of
detection of alkynylphosphorus compounds in the catalytic reac-
tions using chelating phosphines is presumably because the forma-
tion of such compounds, if any, should be very small in light of 4
being a minor product in these reactions. Isolation or detection
of such compounds in these reactions is not an easy task due to
the complexity of the mixture of minor products having the same
phosphorus functionality.
5. (a) Jessop, C. M.; Parsons, A. F.; Routledge, A.; Irvine, D. J. Eur. J. Org. Chem. 2006,
1547. and references cited therein; (b) Cho, D. H.; Jang, D. O. Synlett 2005, 59.
6. Another similar reaction of 1a with dimethyl phosphonate 2C in chlorobenzene
using PPh3 also resulted in nonselective formation of 3aC, 4aC, 5aC, 6aC, and
7aC in 1%, 8%, 9%, 3%, and 3% yields, respectively.
7. A freshly prepared CDCl3 solution of 3bA displayed neat 1H NMR spectrum, but
the spectrum was changing over a period of 2 h at room temperature to
eventually display the spectrum of 8bA.
8. (a) Han, L.-B.; Tanaka, M. J. Am. Chem. Soc. 1996, 118, 1571; (b) Han, L.-B.; Choi,
N.; Tanaka, M. Organometallics 1996, 15, 3259; (c) Han, L.-B.; Mirzaei, F.; Zhao,
C.-Q.; Tanaka, M. J. Am. Chem. Soc. 2000, 122, 5407.
9. We proposed such elemental process, but were unable to provide convincing
evidence. See: Han, L.-B.; Hua, R.; Tanaka, M. Angew. Chem., Int. Ed. 1998, 37, 94;
However, insertion into a Pd–P bond appears possible. See: Wicht, D. K.;
Kourkine, I. V.; Kovacik, I.; Glueck, D. S.; Concolino, T. E.; Yap, G. P. A.; Incarvito,
C. D.; Rheingold, A. L. Organometallics 1999, 18, 5381.
10. For mechanistic work on P–C reductive elimination, see: (a) Levine, A. M.;
Stockland, R. A., Jr.; Clark, R.; Guzei, I. Organometallics 2002, 21, 3278; (b)
Stockland, R. A., Jr.; Levine, A. M.; Giovine, M. T.; Guzei, I. A.; Cannistra, J. C.
Organometallics 2004, 23, 647; (c) Kohler, M. C.; Stockland, R. A., Jr.; Rath, N. P.
Organometallics 2006, 25, 5746; (d) Kalek, M.; Stawinski, J. Organometallics
2008, 27, 5876; (e) Kohler, M. C.; Grimes, T. V.; Wang, X.; Cundari, T. R.;
Stockland, R. A., Jr. Organometallics 2009, 28, 1193.
11. For selected examples on other heteroatom-C or C–C reductive elimination in
palladium complexes, see: (a) Gillie, A.; Stille, J. K. J. Am. Chem. Soc. 1980, 102,
4933; (b) Ozawa, F.; Ito, T.; Nakamura, Y.; Yamamoto, A. Bull. Chem. Soc. Jpn.
1981, 54, 1868; (c) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 8232;
(d) Marcone, J. E.; Moloy, K. G. J. Am. Chem. Soc. 1998, 120, 8527; (e) Yin, J.;
Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 6043; (f) Macgregor, S. A.; Neave, G.
W.; Smith, C. Faraday Discuss. 2003, 124, 111; (g) Mann, G.; Shelby, Q.; Roy, A.
H.; Hartwig, J. F. Organometallics 2003, 22, 2775; (h) Espinet, P.; Echavarren, A.
M. Angew. Chem., Int. Ed. 2004, 43, 4704; (i) Ananikov, V. P.; Musaev, D. G.;
Morokuma, K. Eur. J. Inorg. Chem. 2007, 5390.
In summary, we have developed hydrophosphorylative carbo-
cyclization of 1,6-heptadiyne derivatives. Cyclic compounds hav-
ing phosphorus substituents have been studied actively, aiming
at diverse applications.15 The new procedure disclosed in this letter
may find utility in the relevant area of applications.
12. Mirzaei, F.; Han, L.-B.; Tanaka, M. Tetrahedron Lett. 2001, 42, 297.
13. For a review of
g
3-allyl–metal complexes, see: Clarke, H. L. J. Organomet. Chem.
1974, 80, 155.
14. A reaction of 1a with 2B (130 °C, 3 h, in ethylbenzene, Pd(OAc)2-dppe) afforded
3aB and 4aB in 60% and 9% NMR yields while the same reaction effected using
10-fold excess of 2B resulted in a higher yield of 4aB (21%) at the expense of
3aB (6%). This may imply that H–P(O) alone could also be a hydrogen source
although we could not find possible coproducts like (O)P–P(O) species.
Stockland and coworkers reported the formation of a Pd[P(O)(OPh)2]2 species
in the reaction of MePd[P(O)(OPh)2] with HP(O)(OPh)2, liberating methane: See
Ref. 10b.
Acknowledgments
15. (a) Albertson, N. F. (Sterling Drug Inc.), U.S. Patent 2,980,692, 1961.; (b) Gayer,
H.; Gerdes, P.; Tiemann, R.; Dutzmann, S.; Stenzel, K. (Bayer
Aktiengesellschaft), WO 1996/31463.; (c) Palacios, F.; Pagalday, J.; Piquet, V.;
Dahan, F.; Baceiredo, A.; Bertrand, G. J. Org. Chem. 1997, 62, 292; (d) Lynch Jr., J.
J.; Salata, J. J.; Swanson, R. J.; Fermini, B. (Merck & Co. Ltd.), WO 1998/18476.;
(e) Wang, Y.-G.; Lu, B.-X.; Ye, W.-F.; Zhao, X.-Y.; Yang, J. Chin. J. Org. Chem. 2002,
22, 862; (f) Suzuki, H.; Kawamura, Y.; Myojo, T.; Kakiuchi, N. (Nissan Chemical
Industries, Ltd.), Jpn. Kokai Tokkyo Koho JP 200499519.; (g) Chaikovskaya, A.
A.; Ivonin, S. P.; Dmitriv, Y. V.; Pinchuk, A. M. Chem. Heterocycl. Compd. 2005,
41, 934; (h) Cai, Z. R.; Chen, X.; Fardis, M.; Jabri, S. Y.; Jin, H.; Kim, C. U.; Metobo,
S. E.; Mish, M. R.; Pastor, R. M. (Gilead Sciences, Inc.), WO 2005/117904.; (i)
Cao, L.; Wang, Y.-G.; Song, X.-J.; Liu, G.-H. Chin. J. Org. Chem. 2005, 25, 1007; (j)
Stump, G. L.; Wallace, A. A.; Regan, C. P.; Lynch, J. J., Jr. J. Pharmacol. Exp. Ther.
2005, 315, 1362; (k) Regan, C. P.; Wallace, A. A.; Cresswell, H. K.; Atkins, C. L.;
Lynch, J. J., Jr. J. Pharmacol. Exp. Ther. 2006, 316, 727; (l) Storer, R.; Dousson, C.;
Alexandre, F.-R.; Roland, A. (Idenix Pharmaceuticals), WO 2006/054182.
We thank Dr. Makoto Tanabe for his assistance in X-ray crystal-
lography. This work was supported by a Grant-in-Aid for Scientific
Research on Priority Areas (No. 18065008, ‘Chemistry of Concerto
Catalysis’) from the Ministry of Education, Culture, Sports, Science
and Technology, Japan.
Supplementary data
Experimental details, spectral data of new compounds and crys-
tallographic data for 3aB and 8bA in CIF format are available. Sup-
plementary data associated with this article can be found, in the