as the base.6 Interestingly, when we attempted these reactions
at higher temperatures, we observed the formation of side
products derived from the decarboxylation of the silver
carboxylate followed by coupling with either the iodoarene
(eq 3) or the indole (eq 4). These results led us to hypothesize
that it should be possible to develop an oxidative cross-
coupling methodology combining both C-H and decarboxy-
lative activations (eq 4), which, potentially, would only
generate water and CO2 as byproduct if oxygen was used as
the terminal oxidant. Such a methodology could allow for
excellent control of regio- and chemo-selectivity. As a
comparison, these are significant problems in double C-H
activation oxidative couplings that are generally overcome
by using large excesses of one of the substrates (up to 60
equiv).7
During the preparation of this manuscript, Crabtree et al.
reported four examples of the decarboxylative coupling of
2,6-dimethoxybenzoic acid with arene donors in low to
moderate yields using a Pd/Ag catalyst system at 200 °C.8
Subsequently, Glorius and co-workers reported the intramo-
lecular decarboxylative C-H arylation of 2-phenoxybenzoic
acids.9 Both of these methodologies are restricted to the use
of ortho alkoxy benzoic acids. No examples have been
reported of the use of benzoic acids bearing electron-
withdrawing groups. Here we report the first intermolecular
direct arylation of indoles with several benzoic acids bearing
ortho electron-withdrawing substituents via a C-H func-
tionalization-decarboxylation process. This process occurs
with high chemo- and regio-selectivity in both coupling
partners. Furthermore, contrary to the usual C-2 regioselec-
tivity in indole direct arylation with palladium, this meth-
odology affords exclusively the C-3 arylated indole
adducts.7c,10-12
Initially, we studied the coupling of N-pivaloylindole (1a)
and 2-chloro-5-nitrobenzoic acid (2a, Table 1) using catalytic
Table 1. Optimization of the Decarboxylative Direct C-H
Arylation of N-Pivaloylindole (1a) and 2-Chloro-5-nitrobenzoic
Acid (2a)a
(4) For extensions of this methodology, see: (a) Bi, H.-P.; Zhao, L.;
Liang, Y.-M.; Li, C.-J. Angew. Chem., Int. Ed. 2009, 48, 792. (b) Goossen,
L. J.; Zimmermann, B.; Knauber, T. Angew. Chem., Int. Ed. 2008, 47, 7103.
(c) Goossen, L. J.; Rodriguez, N.; Linder, C. J. Am. Chem. Soc. 2008, 130,
15248. (d) Becht, J.-M.; Le Drian, C. Org. Lett. 2008, 10, 3161. (e) Becht,
J.-M.; Catala, C.; Le Drian, C.; Wagner, A. Org. Lett. 2007, 9, 1781. (f)
Goossen, L. J.; Rodriguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy,
L. M. J. Am. Chem. Soc. 2007, 129, 4824. (g) Forgione, P.; Brochu, M.-
C.; St-Onge, M.; Thesen, K. H.; Bailey, M. D.; Bilodeau, F. J. Am. Chem.
Soc. 2006, 128, 11350. For reviews, see: (h) Bonesi, S. M.; Fagnoni, M.;
Albini, A. Angew. Chem., Int. Ed. 2008, 47, 10022. (i) Goossen, L. J.;
Rodriguez, N.; Goossen, K. Angew. Chem., Int. Ed. 2008, 47, 3100.
(5) (a) Tanaka, D.; Romeril, A. S. P.; Myers, A. G. J. Am. Chem. Soc.
2005, 127, 10323. (b) Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433.
(c) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002,
124, 11250.
entry
Pd cat.
Pd(TFA)2
Pd(TFA)2
Pd(TFA)2
Pd(dppf)Cl2
Pd-PEPPSI-IPr
Pd(MeCN)2Cl2
AgX
3a (%)b
1
2
3
4
5
6
7
8
Ag2O
33
53
72
25
62
77
0
AgOAc
Ag2CO3
Ag2CO3
Ag2CO3
Ag2CO3
-
c
Pd(MeCN)2Cl2
-
Ag2CO3
0
(6) Lebrasseur, N.; Larrosa, I. J. Am. Chem. Soc. 2008, 130, 2926.
(7) For selected references on oxidative couplings, see: (a) Brasche, G.;
Garcia-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008, 10, 2207. (b) Hull,
K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904. (c) Stuart, D. R.;
Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. (d) Stuart,
D. R.; Fagnou, K. Science 2007, 316, 1172. (e) Dwight, T. A.; Rue, N. R.;
Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.
(8) Voutchkova, A.; Coplin, A.; Leadbeater, N. E.; Crabtree, R. H. Chem.
Commun. 2008, 6312.
a Unless otherwise noted, all reactions were carried out using 20 mol
% Pd cat., 3.0 equiv of AgX, 2.0 equiv of 2a, 2.4 equiv of DMSO and 1.0
equiv of 1a in a 0.1 M DMF solution, for 16 h at 110 °C. b Yield of 3a was
measured by 1H NMR analysis of the crude product using an internal
standard. c Pd(MeCN)2Cl2 (100 mol %) was used.
(9) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 4194.
(10) For an excellent review on indole arylation see: Joucla, L.;
Djakovitch, L. AdV. Synth. Catal. 2009, 351, 673.
Pd(TFA)2 and a range of silver salts as oxidants (entries
1-3).13 Gratifyingly, the use of Ag2CO3 afforded the C-3
adduct 3a in good yield (72%, entry 3). A survey of different
palladium catalysts identified Pd(MeCN)2Cl2 as the best
catalyst for this transformation increasing the yield to 77%
(entry 6). In addition to adduct 3a, protodecarboxylation
product 6, decarboxylative homocoupling adduct 7 and traces
of indole dimer 5a were observed. The use of molecular
sieves to prevent the formation of 6 proved unsuccessful.
Remarkably, the reaction is completely regioselective for the
(11) For selected examples of C-2 arylation see: (a) Yang, S.-D.; Sun,
C.-L.; Fang, Z.; Li, B.-J.; Li, Y.-Z.; Shi, Z.-J. Angew. Chem., Int. Ed. 2008,
47, 1473. (b) Wang, X.; Gribkov, D. V.; Sames, D. J. Org. Chem. 2007,
72, 1476. (c) Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R.
Tetrahedron Lett. 2007, 48, 2415. (d) Bellina, F.; Calandri, C.; Cauteruccio,
S.; Rossi, R. Tetrahedron 2007, 63, 1970. (e) Deprez, N. R.; Kalyani, D.;
Krause, A.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 4972. (f) Toure´,
B. B.; Lane, B. S.; Sames, D. Org. Lett. 2006, 8, 1979. (g) Bellina, F.;
Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 1379. (h) Wang, X.;
Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127, 4996. (i) Lane, B. S.;
Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127, 8050. (j) Bressy,
C.; Alberico, D.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 4990. (k) Lane,
B. S.; Sames, D. Org. Lett. 2004, 6, 2897. For selected examples of C-3
arylation, see: (l) Ackermann, L.; Barfuesser, S. Synlett 2009, 808. (m)
Cusati, G.; Djakovitch, L. Tetrahedron Lett. 2008, 49, 2499. (n) Bellina,
F.; Benelli, F.; Rossi, R. J. Org. Chem. 2008, 73, 5529. (o) Djakovitch, L.;
Dufaud, V.; Zaidi, R. AdV. Synth. Catal. 2006, 348, 715. (p) Djakovitch,
L.; Rouge, P.; Zaidi, R. Catal. Commun. 2007, 8, 1561. (q) Zhang, Z.; Hu,
Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R. Tetrahedron Lett. 2007, 48,
2415. (r) Akita, Y.; Itagaki, Y.; Takizawa, S.; Ohta, A. Chem. Pharm. Bull.
1989, 37, 1477.
(12) For a C-2/C-3 regioselective indole arylation under copper catalysis
see: Phipps, R. J.; Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008,
130, 8172
(13) (a) Other protecting groups for the indole were also examined. See
Supporting Information for more details. (b) Other oxidants tested in the
presence of catalytic amounts of silver and copper salts included: O2, Oxone,
Cu(OTf)2, AgOTf and TEMPO. Adduct 3a was not observed in any of
these experiments.
.
Org. Lett., Vol. 11, No. 23, 2009
5507