intramolecular stacking was relatively weaker for 9, because it
should had a more flexible conformation owing to the relative
movement of the two macrocycles, which might disable its
ordered stacking and the formation of the vesicles.
In conclusion, we have demonstrated a new approach for
the construction of reverse vesicles. The vesicles formed by 2
may be further used as a model system to study the cross-
membrane transformation of planar aromatic molecules. For
the vesicles formed by macrocyclic salts, one future study will
focus on the modification of the side chains. Vinyl, ethynyl or
azido groups will be introduced. In this way, the macrocycles
may be cross-linked through the metathesis or click reaction to
generate vesicles that are stable in polar media, which may
display new interesting properties due to the electrostatic
repulsion of the ammonium units.
Fig. 5 A schematic illustration for the formation of the mono-layered
vesicles from the tricationic macrocycles.
This work was financially supported by NSFC
(Nos. 20621062, 20672137, 20732007, and 20872167), STCSM
(09XD1405300), and NBRP (2007CB808001).
(o 0.01 ppm) was exhibited for 3b, 5b, 7 or 8. These obser-
vations also revealed that 1b stacked at high concentrations.
Notes and references
1 D. D. Lasic, Liposomes: From Physics to Applications, Elsevier,
Amsterdam, 1993, p. 575.
2 Vesicles, ed. M. Rosoff, Dekker, 1996, p. 751.
3 (a) I. W. Hamley, Soft Matter, 2005, 1, 36; (b) H. N. Yow and
A. F. Routh, Soft Matter, 2006, 2, 940; (c) A. D. Davis,
D. N. Sheppard and B. D. Smith, Chem. Soc. Rev., 2007, 36,
348; (d) I. W. Hamley and V. Castelletto, Angew. Chem., Int. Ed.,
2007, 46, 4442; (e) F. Sallas and R. Darcy, Eur. J. Org. Chem.,
2008, 957; (f) J. Voskuhl and B. J. Ravoo, Chem. Soc. Rev., 2009,
38, 495; (g) M.-H. Li and P. Keller, Soft Matter, 2009, 5, 927.
4 (a) H. Kunieda, K. Nakamura and D. F. Evans, J. Am. Chem.
Soc., 1991, 113, 1051; (b) H. Kunieda, K. Nakamura,
M. R. Infante and C. Solans, Adv. Mater., 1992, 4, 291;
(c) C. Boettcher, B. Schade and J. H. Fuhrhop, Langmuir, 2001,
SEM images showed that both imine- (3b) and amine-based
(5b) cyclophanes did not form vesicles in chloroform or
dichloromethane. However, in the presence of an excess of
hydrogen iodide (10 eq.), vesicular structures could be
observed (see ESIw). This result should be attributed to the
protonation of their imino and amino units. We propose that
the resulting salts were like 1b to stack to lead to the formation
of the vesicles.
17, 873; (d) D. Domınguez-Gutierrez, M. Surtchev, E. Eiser and
´ ´
C. J. Elsevier, Nano Lett., 2006, 6, 145; (e) L. K. Shrestha,
M. S. Kaneko, T. Sato, D. P. Acharya, T. Iwanaga and
H. Kunieda, Langmuir, 2006, 22, 1449; (f) S. Rangelov,
M. Almgren, K. Edwards and C. Tsvetanov, J. Phys. Chem. B,
2004, 108, 7542; (g) S.-H. Tung, H.-Y. Lee and S. R. Raghavan,
J. Am. Chem. Soc., 2008, 130, 8813; (h) H. Li, J. Hao and Z. Wu,
J. Phys. Chem. B, 2008, 112, 3705; (i) M. H. K. Ebbing, M.-J. Villa,
J.-M. Valpuesta, P. Prados and J. De Mendoza, Proc. Natl. Acad.
Sci. U. S. A., 2002, 99, 4962.
Interestingly, SEM and AFM showed that 2 also generated
vesicles in chloroform, with a mean diameter of ca. 1.5 mm
(Fig. 1d, also see ESIw). Because the two macrocyclic segments
are connected with three flexible linkers, they should stack
intramolecularly. As a result, intermolecular stacking could
occur efficiently to lead to the formation of vesicles. When the
two macrocyclic units are connected with the rigid p-xylene
linkers, no vesicles were observed on the SEM images for
the corresponding capsule 9 (Fig. 6). It was expected that
5 X.-N. Xu, L. Wang, G.-T. Wang, J.-B. Lin, G.-Y. Li, X.-K. Jiang
and Z.-T. Li, Chem.–Eur. J., 2009, 15, 5763.
6 (a) B. Gong, Chem.–Eur. J., 2001, 7, 4336; (b) B. Gong, Acc. Chem.
Res., 2008, 41, 1376; (c) I. Huc, Eur. J. Org. Chem., 2004, 17;
(d) Z.-T. Li, J.-L. Hou, C. Li and H.-P. Yi, Chem.–Asian J., 2006,
1, 766; (e) Z.-T. Li, J.-L. Hou and C. Li, Acc. Chem. Res., 2008, 41,
1343.
7 (a) Y. Zhou and D. Yan, Angew. Chem., Int. Ed., 2004, 43, 4896;
(b) K. T. Kim, M. A. Winnik and I. Manners, Soft Matter, 2006, 2,
957.
8 (a) S. H. Seo, J. Y. Chang and G. N. Tew, Angew. Chem., Int. Ed.,
2006, 45, 7526; (b) J. Sun, X. Chen, C. Deng, H. Yu, Z. Xie and
X. Jing, Langmuir, 2007, 23, 8308.
9 W. Cai, G.-T. Wang, Y.-X. Xu, X.-K. Jiang and Z.-T. Li, J. Am.
Chem. Soc., 2008, 130, 6936.
10 Y. Chen, Y. Lu, Y. Han, B. Zhu, F. Zhang, Z. Bo and C.-Y. Liu,
¨
Langmuir, 2009, 25, 8548.
11 (a) D. M. Vriezema, J. Hoogboom, K. Velonia, K. Takazawa,
P. C. M. Christianen, J. C. Maan, A. E. Rowan and R. J. M. Nolte,
Angew. Chem., Int. Ed., 2003, 42, 772; (b) Y. Li, G. Li, X. Wang,
W. Li, Z. Su, Y. Zhang and Y. Ju, Chem.–Eur. J., 2009, 15, 6399.
Fig. 6 SEM images of (a) 7 (3.0 mM), (b) 8 (3.0 mM), and (c) 9
(1.5 mM), obtained by evaporation of the solutions in CHCl3 on mica.
ꢀc
This journal is The Royal Society of Chemistry 2009
6636 | Chem. Commun., 2009, 6634–6636