H. Zali Boeini, K. Hajibabaei Najafabadi
SHORT COMMUNICATION
Scheme 2. Synthesis of a functionalized benzimidazole.
Supporting Information (see footnote on the first page of this arti-
cle): Complete experimental procedures, 1H NMR spectroscopic
data (including their copies), and elemental microanalysis for some
compounds.
tions, we next examined the generality of these conditions
to other substrates by using several thioamidinium salts and
2-amino precursors. The results are summarized in Table 2.
A variety of substituted phenyl groups were tolerated on
the thioamidinium salts, and reactions occurred with dif-
ferent 2-amino precursors to lead to 2-aryl-substituted
benzazoles.
Acknowledgments
We are grateful to the University of Isfahan research council for
partial support of this work.
It is also worthwhile to note that the 2-amino precursor
should be dissolved in water prior to addition of the
thioamidinium salt to the reaction mixture. Otherwise, sig-
nificant decrease in the yield of the product is observed.
Our investigations revealed that partial hydrolysis occurred
in this case. In addition, thioamidinium salts bearing elec-
tron-withdrawing groups (Entries 7, 8, 9) had more tenden-
cies to hydrolysis when the reaction was run in water. Inter-
estingly, the presence of a carboxylic acid moiety on the 2-
amino precursor does not affect the efficiency of the reac-
tion. Hence, the reaction of 3,4-diaminobenzoic acid with
the S-methylthioamidinium iodide 2d led to the formation
of corresponding benzimidazole (3r, Scheme 2) in rather
good yield (62%).
[1] M. O. Chaney, P. V. Demarco, N. D. Jones, J. L. J. Occolowitz,
J. Am. Chem. Soc. 1974, 96, 1932–1933.
[2] a) E. S. Lazer, M. R. Matteo, G. J. Possanza, J. Med. Chem.
1987, 30, 726–729; b) G. Tsukamoto, K. Yoshino, T. Kohno,
H. Ohtaka, H. Kagaya, K. Ito, J. Med. Chem. 1980, 23, 734–
738.
[3] G. L. Dunn, P. Actor, V. J. DiPasquo, J. Med. Chem. 1966, 9,
751–753.
[4] a) A. D. Rodríguez, C. Ramíruez, I. I. Rodríguez, E. González,
Org. Lett. 1999, 1, 527–530; b) P. J. Palmer, R. B. Trigg, J. V.
Warrington, J. Med. Chem. 1971, 14, 248–251.
[5] C. G. Mortimer, G. Wells, J. P. Crochard, E. L. Stone, T. D.
Bradshaw, M. F. G. Stevens, A. D. Westwell, J. Med. Chem.
2006, 49, 179–185.
[6] X. Xu, Y. Liao, G. Yu, H. You, C. Di, Z. Su, D. Ma, Q. Wang,
S. Li, S. Wang, J. Ye, Y. Liu, Chem. Matter 2007, 19, 1740–
1748.
Conclusions
[7] C. S. Lin, R. Q. Zhang, C. S. Lee, J. Phys. Chem. B 2006, 110,
20847–20851.
We have developed an efficient and simple method for
the preparation of three different types of 2-aryl-substituted
benzazoles. High product yield, the ease of product separa-
tion, safe and eco-friendly reaction medium, and low cost
of the reagents are the salient features of this method. These
advantages promote the method as a promising alternative
to the synthesis of 2-aryl-substituted benzoxazoles, benzo-
thiazoles, and benzimidazoles, which are extremely impor-
tant compounds in medicinal and industrial chemistry.
[8] D. W. Hein, R. J. Alheim, J. J. Leavitt, J. Am. Chem. Soc. 1957,
79, 427–429.
[9] a) B. C. Ranu, R. Jana, S. S. Dey, Chem. Lett. 2004, 33, 274–
275; b) I. Bhatnagar, M. V. George, Tetrahedron 1968, 24,
1293–1298; c) P. L. Beaulieu, B. Hache, E. Von Moos, Synthesis
2003, 1683–1692.
[10] a) A. D. Jordan, C. Luo, A. B. Reitz, J. Org. Chem. 2003, 68,
8693–8696; b) D. F. Shi, T. D. Bradshaw, S. Wrigley, C. J.
McCall, P. Lelieveld, I. Fichtner, M. F. G. Stevens, J. Med.
Chem. 1996, 39, 3375.
[11] S. Ueda, H. Nagasawa, Angew. Chem. Int. Ed. 2008, 47, 6411–
6413.
[12] G. Brasche, S. L. Buchwald, Angew. Chem. Int. Ed. 2008, 47,
Experimental Section
1932–1934.
[13] A. J. Blacker, M. M. Farah, M. I. Hall, S. P. Marsden, O. Saidi,
J. M. J. Williams, Org. Lett. 2009, 11, 2039–2042.
[14] S. T. Jagodzinski, Chem. Rev. 2003, 103, 197–227.
[15] T. Harada, Y. Tamaru, Z. Yoshida, Chem. Lett. 1979, 8, 1353–
1356.
[16] R. L. N. Harris, Aust. J. Chem. 1974, 27, 2635–2643.
[17] F. Matloubi Moghaddam, H. Zali Boeini, Synlett 2005, 1612–
1614.
[18] a) R. J. Peny, B. D. Wilson, R. J. Miller, J. Org. Chem. 1992,
57, 2883–2887; b) Y. Wang, K. Sarris, D. R. Sauer, S. W. Djuric,
Tetrahedron Lett. 2006, 47, 4823–4826; c) S. V. Ryabukhin,
A. S. Plaskon, D. M. Volochnyuk, A. A. Tolmachev, Synthesis
2006, 21, 3715–3726; d) K. Bahrami, M. M. Khodaei, F. Naali,
J. Org. Chem. 2008, 73, 6835–6837; e) V. I. Cohen, J. Hetero-
General Procedure for the Preparation of Benzazoles in Aqueous Me-
dia: In a round-bottomed flask the 2-amino precursor (2-ami-
nophenol, 2-aminthiophenol, or o-phenylenediamine; 1 mmol) and
hexadecyltrimethylammonium bromide (HTAB; 0.1 mmol, 36 mg)
were dissolved in water (5 mL) with vigorous stirring and heated
to 80 °C. Thereafter, the thioamidinium salt (1.2 mmol) was added
portionwise to the reaction mixture during 2 min, and stirring was
continued for 40 min. The reaction mixture was then cooled, and
the precipitated compound was filtered and washed with water
(2ϫ5 mL). The resulting crude product was then recrystallized
from a suitable solvent (EtOH) to obtain pure benzoxazole, benzo-
thiazole, or benzimidazole, respectively.
4928
www.eurjoc.org
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2009, 4926–4929