ORGANIC
LETTERS
2013
Vol. 15, No. 4
732–735
Rapid Formation of N‑Glycopeptides
via Cu(II)-Promoted Glycosylative Ligation
Ryan Joseph, Frank Brock Dyer, and Philip Garner*
Department of Chemistry, Washington State University, Pullman,
Washington 99164-4630, United States
Received October 26, 2012
ABSTRACT
Herein is described the chemoselective Cu(II)-HOBt promoted chemical ligation of glycosylamines and peptide thioacids to give N-glycosylated
peptides. The method is distinguished from other chemical approaches to peptide N-glycosylation in that (1) it can be employed in the presence of
unprotected N-terminal and Lys side chain amines; (2) it is remarkably fast, going to completion in under 30 min; and (3) it produces glycopeptides
without attendant aspartimide formation.
Protein N-glycosylation, wherein a glycan is attached
to an asparagine residue, is an important co- and post-
translational modification that influences a diverse array
of biological processes ranging from protein quality con-
trol to cell recognition.1,2 It has been hypothesized that the
epigenetically controlled biosynthesis of glycoproteins has
evolved in higher organisms as a relatively rapid means
to modulate protein function in response to environmental
changes.3 Glycoproteins have also been implicated in
disease states. For example, cancer cells undergo adaptive
regulation of their cell surface glycosylation patterns in
order to acquire a survival advantage.4 Progress toward
elucidating the glycoproteome has been hindered by the
difficulty in obtaining homogeneous glycoproteins for
characterization and biological studies. The challenges of
glycopeptide synthesis using recombinant techniques make
the case for developing chemical synthetic methods to
access homogeneous glycoproteins.5
constructs have generally utilized the native chemical
ligation6 of glycopeptide segments, which are prepared
by incorporating the glycosylated amino acids during a
solid phase peptide synthesis.5,7 Syntheses of N-glycopep-
tides arising from the coupling of a glycosylamine such
as 1 with an aspartic acid residue embedded in a peptide 2
to give the N-glycosylated peptide 3 (Scheme 1) have also
been reported.8À11
Inherent limitations of these protocols necessitate the
masking of free amino groups (N-terminus, Lys side chains)
in the peptide, restricting their application to the middle
and early stages of a projected glycoprotein synthesis.12
(7) Piontek, C.; Ring, P.; Harjes, O.; Heinlein, C.; Mezzato, S.;
€
€
Lombana, N.; Pohner, C.; Puttner, M.; Silva, D. V.; Martin, A.;
Schmidt, F. X.; Unverzagt, C. Angew. Chem., Int. Ed. 2009, 48, 1936.
€
Piontek, C.; Silva, D. V.; Heinlein, C.; Pohner, C.; Mezzato, S.; Ring, P.;
Martin, A.; Schmidt, F. X.; Unverzagt, C. Angew. Chem., Int. Ed. 2009,
48, 1941. (b) Aussedat, B.; Fasching, B.; Johnston, E.; Sane, N.;
Nagorny, P.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 3532.
(c) Sakamoto, I.; Tezuka, K.; Fukae, K.; Ishii, K.; Tadurur, K.; Maeda,
M.; Ouchi, M.; Yoshida, K.; Nambu, Y.; Igarashi, J.; Hayashi, N.; Tsuji,
T.; Kajihara, Y. J. Am. Chem. Soc. 2012, 134, 5428.
(8) (a) Anisfeld, S. T.; Lansbury, P. T., Jr. J. Org. Chem. 1990, 55,
5560. (b) Cohen-Anisfeld, S. T.; Lansbury, P. T., Jr. J. Am. Chem. Soc.
1993, 115, 10531.
The covalent union of the carbohydrate and peptide
domains of glycoproteins remains a formidable challenge.
Recent synthetic approaches to N-linked glycoprotein
(1) Dwek, R. A. Chem. Rev. 1996, 96, 683.
(2) Gamblin, D. P.; Scanlan, E. M.; Davis, B. G. Chem. Rev. 2009,
109, 131.
(9) Wang, P.; Li, X.; Zhu, J.; Chen, J.; Yuan, Y.; Wu, X.; Danishefsky,
S. J. J. Am. Chem. Soc. 2011, 133, 1597.
(3) (a) Lauc, G.; Zoldos, V. Med. Hypotheses 2009, 73, 510. (b) Lauc,
G.; Zoldos, V. Molecular Biosystems 2010, 6, 2373.
(4) Kannagi, R.; Yin, J.; Miyazaki, K.; Izawa, M. Biochim. Biophys.
Acta 2008, 1780, 525.
(5) Rich, J. R.; Withers, S. G. Nat. Chem. Biol. 2009, 5, 206.
(6) Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.
(10) Kaneshiro, C. M.; Michael, K. Angew. Chem., Int. Ed. 2006, 45,
1077.
€
€
(11) (a) Ullmann, V.; Radisch, M.; Boos, I.; Freund, J.; Pohner, C.;
Schwarzinger, S.; Unverzagt, C. Angew. Chem., Int. Ed. 2012, 51, 11566.
(b) Wang, P.; Aussedat, B.; Vohra, Y.; Danishefsky, S. J. Angew. Chem.,
Int. Ed. 2012, 51, 11571.
r
10.1021/ol302961s
Published on Web 01/24/2013
2013 American Chemical Society