F. Ding et al.
Acknowledgments
CO
I
H
Ru
Ru
VII
H2
F.D. is indebted to the Research Fund of Ghent University and
Shenyang University of Chemical Technology for a research grant.
F.V., S.V.D and P.C. are grateful to the FWO-Flanders (Fund for
Scientific Research – Flanders) for financial support.
H
R
Ru
RCH2OH
H
H2
H2
H
H
VIII
H
VI
2-OCHR
II
Ru
Ru
References
η
O
H
H
[1] B. Cornils, W. A. Herrmann, Applied Homogeneous Catalysis with
Organometallic Compounds 2nd ed., (Wiley VCH: Weinheim
Germany) Vol 3 2002, 1119.
CH2R
H
Ru
III
[2] R. Issaadi, F. Garin, C. E. Chitour, Catal. Today 2006, 113, 174.
[3] C. Sui-Seng, A. Castonguay, Y. F. Chen, D. Gareau, L. F. Groux,
D. Zargarian, Top. Catal. 2006, 37, 81.
OCH2R
V
OCH2R
or
Ru
H
H2
=
[4] K. Tani, T. Yamagata, S. Akutagawa, H. Kumobayashi, T. Taketomi,
H. Takaya, A. Miyashita, R. Noyori, S. Otsuka, J. Am. Chem. Soc. 1984,
106, 5208.
[5] S. T. Wong, T. Li, S. F. Cheng, J. F. Lee, C. Y. Mou, Appl. Catal., A 2005,
296, 90.
[6] C. F. Lochow, R. G. Miller, J. Org. Chem. 1976, 41, 3020.
[7] M. Krel, J. Y. Lallemand, C. Guillou, Synlett 2005, 2043.
[8] V. Cadierno, S. E. Garcia-Garrido, J. Gimeno, Chem. Commun. 2004,
232.
Ru
IV
H
OCH2R
[Ru(CO)(PPh ) (Ln)]
Ru
3 2
Scheme 3. Proposed mechanism for decarbonylation of RCH2OH with
ruthenium hydride.
[9] A. Bernas, N. Kumar, P. Laukkanen, J. Vayrynen, T. Salmi,
D. Y. Murzin, Appl. Catal. A 2004, 267, 121.
[10] J. A. Cabeza, I. del Rio, E. Perez-Carreno, V. Pruneda, Chem. Eur. J.
2010, 16, 5425.
Conclusion
[11] Z. Xu, R. Fang, C. Zhao, J. Huang, G. Li, N. Zhu, C. Che, J. Am. Chem.
Soc. 2009, 131, 4405.
[12] P. Lukinskas, S. Kuba, R. K. Grasselli, H. Knoezinger, Top. Catal. 2007,
46, 87.
[13] M. Sodeoka, H. Yamada, M. Shibasaki, J. Am. Chem. Soc. 1990, 112,
4906.
[14] G. J. Boons, A. Burton, S. Isles, Chem. Commun. 1996, 141.
[15] K. Hirai, H. Suzuki, H. Kashiwagi, Y. Morooka, T. Ikawa, Chem. Lett.
1982, 23.
[16] K. Hirai, H. Suzuki, Y. Morooka, T. Ikawa, Tetrahedron Lett. 1980, 21,
3413.
[17] J. K. Stille, Y. Becker, J. Org. Chem. 1980, 45, 2139.
[18] T. B. Stolwijk, E. J. R. Sudholter, D. N. Reinhoudt, J. Vaneerden,
S. Harkema, J. Org. Chem. 1989, 54, 1000.
[19] H. Suzuki, Y. Koyama, Y. Morooka, T. Ikawa, Tetrahedron Lett. 1979,
1415.
[20] H. Suzuki, H. Yashima, T. Hirose, M. Takahashi, Y. Morooka, T. Ikawa,
Tetrahedron Lett. 1980, 21, 4927.
In conclusion, an in situ series of ruthenium hydride complexes
RuH(PPh3)2(CO)(Ln) (n = a–h) incorporating a Schiff base lig-
and was developed and investigated as isomerization catalysts.
In contrast to what has been observed for ruthenium hydride
catalysts described in the literature, a noteworthy advantage
of these new catalysts is their inertness toward air and mois-
ture. This advantage is related to the coordination of a Schiff
base ligand. This also results in enhancement of the cata-
lyst lifetime and thus a lower catalyst loading can be applied.
Also, careful pretreatment of solvents and substrates is unnec-
essary, since the reaction can be performed in the open air,
whereupon monitoring of the reaction progress becomes very
convenient.
The complexes were tested for their isomerization performance
without and with various solvents and the different behaviors
of the ruthenium catalysts were explained. All the new species
revealed higher activities than the parent precursor.
[21] D. F. Ewing,P. B. Wells,D. E. Webster,B. Hudson, J.Chem.Soc.Dalton
Trans. 1972, 1287.
[22] S. Monsaert, A. L. Vila, R. Drozdzak, P. Van der Voort, F. Verpoort,
Chem. Soc. Rev. 2009, 38, 3360.
These observations show that modification of the Schiff
base ligand can induce substantial changes in the reactiv-
ity of the corresponding catalyst. The obtained results, that
all the nitro-substituted complexes performed better than
the non-nitro-substituted ones and that all catalysts showed
the best performance in 2-butanol, suggest that the cat-
alytic activity strongly depends on the steric and electronic
environment of the ruthenium as well as on the solvent
used. Further fine-tuning of the Schiff base ligands will im-
prove the potential of these catalytic systems in the field of
isomerization.
Finally, the results of the present investigation suggest a
promising application of a new family of organoruthenium (II)
hydride Schiff base complexes. The fact that hydride catalysts
have been reported for transfer hydrogenation and exhibit good
isomerization activities (our work) would allow them to combine
these two methodologies with some interesting properties by
using new substrate combinations. Further studies concerning
these points are currently underway.
[23] A. M. L. Vila, S. Monsaert, R. Drozdzak, S. Wolowiec F. Verpoort, Adv.
Synth. Catal. 2009, 351, 2689.
[24] R. Drozdzak, B. Allaert, N. Ledoux, I. Dragutan, V. Dragutan,
F. Verpoort, Adv. Synth. Catal. 2005, 347, 1721.
[25] R. Drozdzak, B. Allaert, N. Ledoux, I. Dragutan, V. Dragutan,
F. Verpoort, Coordin. Chem. Rev. 2005, 249, 3055.
[26] F. Ding, Y. G. Sun, F. Verpoort, Eur. J. Inorg. Chem. 2010, 10, 1536.
[27] T. Opstal, F. Verpoort, Angew. Chem. Int. Ed. 2003, 42, 2876.
[28] V. Alteparmakian, S. D. Robinson, Inorg. Chim. Acta 1986, 116, L37.
[29] V. Chinnusamy, K. Natarajan, Synth. Reac. Inorg. Met.-Org. Chem.
1993, 23, 889.
[30] D. Thangadurai, T. S. Kim, Chin. J. Inorg. Chem. 2006, 22, 1055.
[31] C. N. K. Jayabalakrishnan, Synth. Reac. Inorg. Met.-Org. Chem. 2001,
31, 983.
[32] M. B. K. P. Periyasamy, V. Chinnusamy, Indian J. Chem., Sect A: Inorg.,
Bio-inorg., Phys., Theor. Anal. Chem. 2004, 43A(10), 2132.
[33] N. Ahmed, J. J. Levison, S. D. Robinson M. F. Uttley, Inorg. Synth.
1974, 15, 48.
[34] S. Chang, L. Jones, C. M. Wang, L. M. Henling, R. H. Grubbs,
Organometallics 1998, 17, 3460.
[35] F. Ding,Y. G. Sun,S. Monsaert,R. Drozdzak,I. Dragutan,V. Dragutan,
F. Verpoort, Curr. Org. Synth. 2008, 5, 291.
[36] J. Louie, R. H. Grubbs, Organometallics 2002, 21, 2153.
c
wileyonlinelibrary.com/journal/aoc
Copyright ꢀ 2011 John Wiley & Sons, Ltd.
Appl. Organometal. Chem. 2011, 25, 601–607