ORGANIC
LETTERS
2009
Vol. 11, No. 23
5510-5513
Enhancement of Reaction Efficiency by
Functionalized Alcohols on
Gold(I)-Catalyzed Intermolecular
Hydroalkoxylation of Unactivated Olefins
Toshifumi Hirai, Akiyuki Hamasaki, Aki Nakamura, and Makoto Tokunaga*
Department of Chemistry, Graduate School of Sciences, Kyushu UniVersity,
6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan 812-8581, and JST (Japan Science and
Technology Agency) CREST, Japan
mtok@chem.kyushu-uniV.jp
Received October 7, 2009
ABSTRACT
Intermolecular hydroalkoxylation of unactivated olefins catalyzed by the combination of gold(I) and electron deficient phosphine ligands has
been developed. Although pairings of unactivated olefins and common aliphatic alcohols gave unsatisfactory results in gold catalyzed
hydroalkoxylations, the use of alcohol substrates bearing coordination functionalities such as halogen or alkoxy groups showed great
improvement of reactivity.
Nucleophilic addition reactions to carbon-carbon multiple
bonds are one of the most important transformations of
unsaturated organic compounds.1 Among them, hydroalkoxy-
lation is a quite straightforward method to access ether
products from unsaturated hydrocarbons. Many methodolo-
gies have been developed by means of metal catalysts (e.g.,
Pd,2 Pt,3 and others4) or acid catalysts (Brønsted acid5 or
Lewis superacid6) to activate C-C multiple bonds. Recently
Au catalysts are drawing great attention because of their
moderate activity for this purpose.7 While the Au-catalyzed
hydroalkoxylation of alkynes8 and allenes9 is relatively well-
developed, the hydroalkoxylation of olefins, regardless of
(6) Lemechko, P.; Grau, F.; Antoniotti, S.; Dun˜ach, E. Tetrahedron Lett.
2007, 48, 5731.
(1) (a) Mu¨ller, T. E.; Beller, M. Chem. ReV. 1998, 98, 675. (b)
Yamamoto, Y.; Radhakrishnan, U. Chem. Soc. ReV. 1999, 28, 199. (c)
Chianese, A. R.; Lee, S. J.; Gagne´, M. R. Angew. Chem., Int. Ed. 2007, 46,
4042.
(7) (a) Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237. (b) Hoffmann-
Ro¨der, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. (c) Hashmi,
A. S. K. Chem. ReV. 2007, 107, 3180.
(8) (a) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729. (b) Teles,
J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415. (c)
Belting, V.; Krause, N. Org. Lett. 2006, 8, 4489. (d) Liu, B.; De Brabander,
J. K. Org. Lett. 2006, 8, 4907.
(2) (a) Gligorich, K. M.; Schultz, M. J.; Sigman, M. S. J. Am. Chem.
Soc. 2006, 128, 2794. (b) Zhang, Y.; Sigman, M. S. Org. Lett. 2006, 8,
5557. (c) Patil, N. T.; Lutete, L. M.; Wu, H.; Pahadi, N. K.; Gridnev, I. D.;
Yamamoto, Y. J. Org. Chem. 2006, 71, 4270.
(9) (a) Hoffmann-Ro¨der, A.; Krause, N. Org. Lett. 2001, 3, 2537. (b)
Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485. (c) Zhang, Z.; Liu, C.;
Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc.
2006, 128, 9066. (d) Zhang, Z.; Widenhoefer, R. A. Angew. Chem., Int.
Ed. 2007, 46, 283. (e) Zhang, Z.; Widenhoefer, R. A. Org. Lett. 2008, 10,
2079. (f) Horino, Y.; Takata, Y.; Hashimoto, K.; Kuroda, S.; Kimura, M.;
Tamaru, Y. Org. Bioorg. Chem. 2008, 6, 4105. (g) Nishina, N.; Yamamoto,
Y. Tetrahedron Lett. 2008, 49, 4908. (h) Nishina, N.; Yamamoto, Y.
Tetrahedron 2009, 65, 1799.
(3) Qian, H.; Han, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004,
126, 9536.
(4) (a) Oe, Y.; Ohta, T.; Ito, Y. Synlett 2005, 179. (b) Messerle, B. A.;
Vuong, K. Q. Organometallics 2007, 26, 3031. (c) Yu, X.; Seo, S.; Marks,
T. J. J. Am. Chem. Soc. 2007, 129, 7244.
(5) (a) Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He,
C. Org. Lett. 2006, 8, 4175. (b) Rosenfeld, D. C.; Shekhar, S.; Takemiya,
A.; Utsunomiya, M.; Hartwig, J. F. Org. Lett. 2006, 8, 4179.
10.1021/ol9023166 CCC: $xxxx
Published on Web 11/09/2009
2009 American Chemical Society