4 (a) R. J. Brea, J. R. Granja, Self-Assembly of Cyclic Peptides in
Hydrogen-Bonded Nanotubes, In Dekker Encyclopedia of Nanoscience
and Nanotechnology, J. A. Schwarz, C. I. Contescu and K. Putyera,
Eds.; Marcel Dekker Inc., 2004, p. 3439; (b) D. T. Bong, T. D. Clark,
J. R. Granja and M. R. Ghadiri, Angew. Chem., Int. Ed., 2001, 40, 988;
(c) M. R. Ghadiri, J. R. Granja, R. A. Milligan, D. E. McRee and N.
Khazanovich, Nature, 1993, 366, 324; (d) N. Khazanovich, J. R. Granja,
D. E. McRee, R. A. Milligan and M. R. Ghadiri, J. Am. Chem. Soc.,
1994, 116, 6011; (e) M. R. Ghadiri, J. R. Granja and L. K. Buehler,
Nature, 1994, 369, 301.
5 (a) M. R. Ghadiri, K. Kobayashi, J. R. Granja, R. K. Chadha and D. E.
McRee, Angew. Chem., Int. Ed. Engl., 1995, 34, 93; (b) K. Kobayashi,
J. R. Granja and M. R. Ghadiri, Angew. Chem., Int. Ed. Engl., 1995, 34,
95; (c) D. T. Bong and M. R. Ghadiri, Angew. Chem., Int. Ed., 2001, 40,
2163; (d) M. Saviano, A. Lombardi, C. Pedone, B. Di Blasio, X. C. Sun
and G. P. Lorenzi, J. Inclusion Phenom. Mol. Recognit. Chem., 1994,
18, 27; (e) X. C. Sun and G. P. Lorenzi, Helv. Chim. Acta, 1994, 77,
1520; (f) W. S. Horne, N. Ashkenasy and M. R. Ghadiri, Chem.–Eur. J.,
2005, 11, 1137.
6 C. Reiriz, R. J. Brea, R. Arranz, J. L. Carrascosa, A. Garibotti, B.
Manning, J. M. Valpuesta, R. Eritja, L. Castedo and J. R. Granja,
J. Am. Chem. Soc., 2009, 131, 11335.
7 (a) M. Amor´ın, L. Castedo and J. R. Granja, J. Am. Chem. Soc., 2003,
125, 2844; (b) C. Reiriz, L. Castedo and J. R. Granja, J. Pept. Sci., 2008,
14, 241; (c) M. Amor´ın, L. Castedo and J. R. Granja, Chem.–Eur. J.,
2005, 11, 6543; (d) M. Amor´ın, R. J. Brea, L. Castedo and J. R. Granja,
Org. Lett., 2005, 7, 4681; (e) R. J. Brea, L. Castedo and J. R. Granja,
Chem. Commun., 2007, 3267.
12 D. L. Heywood and B. Phillips, J. Org. Chem., 1960, 25, 1699.
13 M. Curini, F. Epifano, M. C. Marcotullio and O. Rosati, Synlett, 1999,
777.
14 T. Takeda, H. Watanabe and T. Kitahara, Synlett, 1997, 1149.
15 P. V. Reddy, L. V. R. Reddy, B. Kumar, R. Kumar, P. R. Maulik and
A. K. Shaw, Tetrahedron, 2008, 64, 2153.
16 J. Garcia, F. Urpi and J. Vilarrasa, Tetrahedron Lett., 1984, 25, 4841;
J. T. Lundquist and J. C. Pelletier, Org. Lett., 2001, 3, 781; X. Wang,
S. G. Nelson and C. P. Curran, Tetrahedron, 2007, 63, 6141.
17 Y. G. Gololobov and L. F. Kasukhin, Tetrahedron, 1992, 48, 1353; V.
Maunier, P. Boullanger and D. Lafont, J. Carbohydr. Chem., 1997, 16,
231; M. Mizuno, I. Muramoto, K. Kobayashi, H. Yaginuma and T.
Inazu, Synthesis, 1999, 162.
18 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397; F. Albericio, L. A.
Carpino, In: Methods in Enzymology, G. B. Fields, Ed. Academic Press,
New York, 1997; Vol. 289, pp 104.
19 Under these conditions other MeN-Acp-containing tetrapeptides give
rise to cyclic octapeptides, see ref. 7e.
20 Tetrapeptides c-[(D-Phe-L-MeN-g-Ach)2-] and c-[(l-Leu-d-MeN-g-
Acp)2-] have estimated association constants in chloroform of only
15 M-1 and 45 M-1 respectively, see ref. 7d.
21 M. S. Searle, M. S. Westwell and D. H. Williams, J. Chem. Soc., Perkin
Trans. 2, 1995, 141; J. D. Dunitz, Chem. Biol., 1995, 2, 709.
22 The only nonconclusive evidence of the type of the topoisomeric dimers
present in solution is the lack of NOE cross-peak in the ROESY
spectrum between Hd-Ahf(4.32 ppm) and Ha-Acp that would correspond
to the Dt-16, suggesting the main formation of the cis-topoisomer.
23 A. D. Becke, J. Chem. Phys., 1993, 98, 5648; A. D. Becke, J. Chem.
Phys., 1992, 96, 2155; C. Lee, W. Yang and R. G. Parr, Phys. Rev. B:
Condens. Matter Mater. Phys., 1988, 37, 785.
8 (a) R. J. Brea, M. E. Va´zquez, M. Mosquera, L. Castedo and J. R.
Granja, J. Am. Chem. Soc., 2007, 129, 1653; (b) R. J. Brea, L. Castedo,
J. R. Granja, M. A. Herranz, L. Sanchez, N. Mart´ın, W. Seitz and D. M.
Guldi, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5291.
24 R. J. Brea, M. Amor´ın, L. Castedo and J. R. Granja, Angew. Chem.,
Int. Ed., 2005, 44, 5710.
9 R. R. Talekar and R. H. Wightman, Tetrahedron, 1997, 53, 3831; J.
Moravkova´, J. Capkova´ and J. Stanek, Carbohydr. Res., 1994, 263, 61.
10 J. John, Amino acid and peptide synthesis, S. G. Davies, R. G. Compton,
J. Evans and L. F. Gladden, Eds.: Oxford University Press, 2nd Ed.
Oxford, 2002.
25 Y. Zhao, N. E. Schultz and D. G. Truhlar, J. Chem. Theory Comput.,
2006, 2, 364.
26 This basis set includes diffuse functions on C, N, and O atoms, and
polarization functions on hydrogens, which may be important for
modeling hydrogen bonding appropriately.
11 N. Chidambaram, S. Bhat and S. Chandrasekaran, J. Org. Chem., 1992,
27 Gaussian 03, Revision A.01, M. J. Frisch, et al. Gaussian, Inc.,
57, 5013.
Wallingford CT, 2004.
This journal is
The Royal Society of Chemistry 2009
Org. Biomol. Chem., 2009, 7, 4358–4361 | 4361
©