5 L. Tao, J. Geng, G. Chen, Y. Xu, V. Ladmiral, G. Mantovani and
D. M. Haddleton, Chem. Commun., 2007, 3441–3443.
6 R. Esfand and D. A. Tomalia, Drug Discovery Today, 2001, 6,
427–436.
7 D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos,
S. Martin, J. Roeck, J. Ryder and P. Smith, Polym. J. (Tokyo),
1985, 17, 117–132.
8 G. R. Newkome, Z. Yao, G. R. Baker and V. K. Gupta, J. Org.
Chem., 1985, 50, 2003–2004.
9 C. J. Hawker and J. M. J. Frechet, J. Am. Chem. Soc., 1990, 112,
7638–7647.
10 P. Antoni, Y. Hed, A. Nordberg, D. Nystrom, H. von Holst,
A. Hult and M. Malkoch, Angew. Chem., Int. Ed., 2009, 48,
2126–2130.
11 V. Maraval, A. M. Caminade, J. P. Majoral and J. C. Blais, Angew.
Chem., Int. Ed., 2003, 42, 1822–1826.
12 J.-F. Lutz, Angew. Chem., Int. Ed., 2007, 46, 1018–1025.
13 W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun.,
2007, 28, 15–54.
14 C. Ornelas, J. Ruiz Aranzaes, E. Cloutet, S. Alves and D. Astruc,
Angew. Chem., Int. Ed., 2007, 46, 872–877.
15 C. N. Urbani, C. A. Bell, M. R. Whittaker and M. J. Monteiro,
Macromolecules, 2008, 41, 1057–1060.
Scheme 2 The chemical structures of the cisplatin (CDDP) and the
carboxylic terminal dendrimer (6).
16 M. J. Joralemon, R. K. O’Reilly, J. B. Matson, A. K. Nugent,
C. J. Hawker and K. L. Wooley, Macromolecules, 2005, 38,
5436–5443.
in the conjugate was determined by a method described in a
previous study,39 and a loading of 1.37 mmol gÀ1 of platinum
was found in reference to standard solutions of free CDDP,
which corresponds to a loading of approximately 86%, based
on the theoretic value of 1.59 mmol gÀ1 whereby all the
platinum species present have been conjugated to the dendrimer.
In summary, the thiol–yne reaction was successfully applied
to the synthesis of dendritic macromolecules via a divergent
approach. Dendrimers with one hundred and ninety-four
hydroxyl functionalities and twenty-four carboxyl groups were
synthesized, maintaining a high number of reactive chain ends
with the bare minimum of reactions. The latter system was
further tested as a possible drug delivery vehicle with the
successful conjugation of the dendrimer with cisplatin. The
metal-free and benign reaction conditions allow for an environ-
mentally friendly process to be developed which is more
attractive for drug delivery related applications. The platinum
conjugation experiment, although only a preliminary study,
has shown a possible application for these macromolecules
hence, further investigations in regard to the dendrimer acting
as a drug carrier are currently being carried out. Most
importantly, we believe this approach featuring the robust
and efficient nature of thiol–yne reaction will not only benefit
dendrimer-related synthesis but shows great potential as a
versatile synthetic tool for the fabrication of different well-
defined functional macromolecules.
17 M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker,
T. P. Russell, P. Wu and V. V. Fokin, Macromolecules, 2005, 38,
3663–3678.
18 P. Wu, M. Malkoch, J. N. Hunt, R. Vestberg, E. Kaltgrad,
M. G. Finn, V. V. Fokin, K. B. Sharpless and C. J. Hawker,
Chem. Commun., 2005, 5775–5777.
19 R. Vestberg, M. Malkoch, M. Kade, P. Wu, V. V. Fokin,
K. B. Sharpless, E. Drockenmuller and C. J. Hawker, J. Polym.
Sci., Part A: Polym. Chem., 2007, 45, 2835–2846.
20 P. Antoni, D. Nystroem, C. J. Hawker, A. Hult and M. Malkoch,
Chem. Commun., 2007, 2249–2251.
21 A. Gress, A. Voelkel and H. Schlaad, Macromolecules, 2007, 40,
7928–7933.
22 L. M. Campos, K. L. Killops, R. Sakai, J. M. J. Paulusse,
D. Damiron, E. Drockenmuller, B. W. Messmore and
C. J. Hawker, Macromolecules, 2008, 41, 7063–7070.
23 J. W. Chan, B. Yu, C. E. Hoyle and A. B. Lowe, Chem. Commun.,
2008, 4959–4961.
24 G. Chen, S. Amajjahe and M. H. Stenzel, Chem. Commun., 2009,
1198–1200.
25 K. L. Killops, L. M. Campos and C. J. Hawker, J. Am. Chem. Soc.,
2008, 130, 5062–5064.
26 C. Diehl and H. Schlaad, Macromol. Biosci., 2009, 9, 157–161.
27 A. Dondoni, Angew. Chem., Int. Ed., 2008, 47, 8995–8997.
28 L. Nurmi, J. Lindqvist, R. Randev, J. Syrett and D. M. Haddleton,
Chem. Commun., 2009, 2727–2729.
29 C. Finzi, G. Venturini and L. Sartini, Gazz. Chim. Ital., 1930, 60,
798–811.
30 E. P. Kohler and H. Potter, J. Am. Chem. Soc., 1935, 57,
1316–1321.
31 E. Kobayashi, T. Yoshino, S. Aoshima and J. Furukawa, J. Polym.
Sci., Part A: Polym. Chem., 1995, 33, 2403–2414.
32 B. D. Fairbanks, T. F. Scott, C. J. Kloxin, K. S. Anseth and
C. N. Bowman, Macromolecules, 2009, 42, 211–217.
33 T. Ohashi, E. Kobayashi, T. Jinbo and J. Furukawa, J. Polym.
Sci., Part A: Polym. Chem., 1997, 35, 1621–1625.
34 B. Ochiai, I. Tomita and T. Endo, Polym. Bull. (Berlin), 2004, 51,
263–269.
The authors are grateful for financial support from the
Australian Research Council (ARC) in the form of a
Discovery Grant. We thank Dr S. Amajjahe for helpful
discussions.
35 J. W. Chan, H. Zhou, C. E. Hoyle and A. B. Lowe, Chem. Mater.,
2009, 21, 1579–1585.
36 J. W. Chan, C. E. Hoyle and A. B. Lowe, J. Am. Chem. Soc., 2009,
131, 5751–5753.
37 J. C. Sauer, J. Am. Chem. Soc., 1957, 79, 5314–5315.
38 N. Malik, E. G. Evagorou and R. Duncan, Anti-Cancer Drugs,
1999, 10, 767–776.
Notes and references
1 U. Boas and P. M. H. Heegaard, Chem. Soc. Rev., 2004, 33, 43–63.
2 M. J. Cloninger, Curr. Opin. Chem. Biol., 2002, 6, 742–748.
3 A. Agarwal, A. Asthana, U. Gupta and N. K. Jain, J. Pharm.
Pharmacol., 2008, 60, 671–688.
4 L. Tao, G. Chen, G. Mantovani, S. York and D. M. Haddleton,
Chem. Commun., 2006, 4949–4951.
39 B. Schechter, M. A. Rosing, M. Wilchek and R. Arnon, Cancer
Chemother. Pharmacol., 1989, 24, 161–166.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 6291–6293 | 6293