C. Coppola et al. / Tetrahedron 65 (2009) 9694–9701
9701
8. Di Fabio, G.; Randazzo, A.; D’Onofrio, J.; Ausı`n, C.; Grandas, A.; Pedroso, E.; De
Napoli, L.; Montesarchio, D. J. Org. Chem. 2006, 71, 3395–3408.
9. (a) Coppola, C.; Saggiomo, V.; Di Fabio, G.; De Napoli, L.; Montesarchio, D. J. Org.
Chem. 2007, 72, 9679–9689; (b) Licen, S.; Coppola, C.; D’Onofrio, J.; Mon-
tesarchio, D.; Tecilla, P. Org. Biomol. Chem. 2009, 7, 1060–1063.
2x(H-3)], 3.67–3.55 [overlapped signals, 32H, 8x(OCH2CH2O)], 3.51
[m, 2H, 2x(H-2)]; dC (175 MHz, D2O): 158.8, 132.7, 126.4 and 119.3
(aromatic carbons),103.3 (C-1), 83.5 (C-3), 83.4 (C-2), 80.4 (C-4), 74.5,
74.4 and 72.8 [10x(OCH2CH2O)], 69.9 (C-5), 69.0 (C-6); dP
(161.98 MHz, D2O): 0.08; ESI-MS (negative ions): calcd for
C44H66O24P2, 1040.34; m/z, found 1038.79 (MꢁH)ꢁ; 517.82
(Mꢁ2H)2ꢁ; HRMS (MALDI-TOF, negative ions): m/z: calcd for
C44H65O24P2: 1039.3341; found 1039.3293.
10. For recent examples of crown ethers playing key roles in functionalized cal-
ixarene-based chemosensors, see, among others: (a) Chang, K.-C.; Su, I.-H.;
Senthilvelan, A.; Chung, W.-S. Org. Lett. 2007, 9, 3363–3366; (b) Zhang, D.; Cao,
X.; Purkiss, D. W.; Bartsch, R. A. Org. Biomol. Chem. 2007, 5, 1251–1259.
11. See, for example: (a) Gibson, H. W.; Wang, H.; Bonrad, K.; Jones, J. W.;
Slebodnick, C.; Zackharov, L. N.; Rheingold, A. L.; Habenicht, B.; Lobue, P.; Ratliff,
A. Org. Biomol. Chem. 2005, 3, 2114–2121; (b) Macrocyclic Chemistry; Dietrich, B.,
Viout, P., Lehn, J. M., Eds.; VCH: New York, NY, 1993; (c) Antonini Vitali, C.;
Masci, B. Tetrahedron 1989, 45, 2201–2212; (d) Ercolani, G.; Mandolini, L.; Masci,
B. J. Am. Chem. Soc. 1981, 103, 2780–2782; (e) For a very recent example, see:
Illuminati, G.; Mandolini, L. Acc. Chem. Res. 1981, 14, 95–102; Porwanski, S.;
Marsura, A. Eur. J. Org. Chem. 2009, 13, 2047–2050 and references cited therein.
12. (a) Adinolfi, M.; De Napoli, L.; Di Fabio, G.; Iadonisi, A.; Montesarchio, D.;
Piccialli, G. Tetrahedron 2002, 58, 6697–6704; (b) Adinolfi, M.; De Napoli, L.; Di
Fabio, G.; Iadonisi, A.; Montesarchio, D. Org. Biomol. Chem. 2004, 2, 1879–1886.
13. For a recent review, see for example: Reese, C. B. Org. Biomol. Chem. 2005, 3,
3851–3868.
Acknowledgements
We thank MIUR (PRIN) for grants in support of this investigation
`
and Centro di Metodologie Chimico-Fisiche (CIMCF), Universita di
Napoli ‘Federico II’, for the MS and NMR facilities. We also thank
`
prof. Paolo Tecilla, from Universita di Trieste, Italy, for the trans-
membrane ion transport assays.
14. (a) Moggio, L.; De Napoli, L.; Di Blasio, B.; Di Fabio, G.; D’Onofrio, J.;
Montesarchio, D.; Messere, A. Org. Lett. 2006, 8, 2015–2018; (b) Alazzouzi, E. M.;
Escaja, N.; Grandas, A.; Pedroso, E. Angew. Chem., Int. Ed. 1997, 36, 1506–1508
and references cited therein.
15. To further corroborate this hypothesis, which would well explain the irre-
sponsiveness of 3 towards the addition of metal cations, two kinds of experi-
Supplementary data
Supplementary data associated with this article can be found in
ments were carried out. The first one involved the treatment of
3 with
competing binders as EDTA, which was left in contact with the bis-crown
derivative for 72 h; however no apparent change was observed in the 1H NMR
resonances in 3 as such, nor when successively left in contact with metal
cations. Similar results were obtained treating 3 with strong cation exchange
resins, as Chelex-100. In a second set of experiments, the apolar, fully protected
macrocycle 12 was filtered through basic alumina, reported also by other au-
thors (cf.r. ref. 6b and references cited therein) as a standard chromatographic
procedure in crown ether chemistry for cations removal. Indeed 12, originally
only soluble in methanol, after filtration on alumina was converted into
a chloroform soluble compound, with a higher Rf, still having the same MS
features. However, if it could be reasonably concluded that this treatment was
effective in removing bound cations from the crown ether pockets in 12, no
different behaviour was then observed when analyzing the resulting 3. It is to
be noted, however, that 3 is derived from 12 through two deprotection steps,
with the latter one carried out in aq ammonia, requiring for the purification
a prolonged contact with aq solutions. So, even if efficiently removed from 12,
Naþ or Kþ ions could be successively extracted from aq solutions and/or from
glassware, so to give a stable complex of 3, which is then obviously unreactive
towards additional metal ions.
References and notes
1. (a) Supramolecular Chemistry; Steed, J. W., Atwood, J. L., Eds.; John Wiley & Sons:
Chichester, 2000; (b) Core Concepts in Supramolecular Chemistry and Nano-
chemistry; Steed, J. W., Turner, D. R., Wallace, K. J., Eds.; John Wiley & Sons:
Chichester, 2007.
2. (a) Pedersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017–7036; (b) Crown Ethers and
Cryptands, Monographs in Supramolecular Chemistry; Stoddart, J. F., Ed.; The
Royal Society of Chemistry: London, 1991.
3. See, for example: (a) Pigge, F. C.; Dighe, M. K.; Houtman, J. C. D. J. Org. Chem.
2008, 73, 2760–2767; (b) Costero, A. M.; Sanchis, J.; Peransi, S.; Gil, S.; Sanz, V.;
Domenech, A. Tetrahedron 2004, 60, 4683–4691; (c) An, H.; Bradshaw, J. S.;
Izatt, R. M.; Yan, Z. Chem. Rev. 1994, 94, 939–991; (d) Kikukawa, K.; He, G. X.;
Abe, A.; Goto, T.; Arata, A.; Ikeda, T.; Wada, F.; Matsuda, T. J. Chem. Soc., Perkin
Trans. 2 1987, 135–141.
4. (a) Liu, Y.; Duan, Z.-Y.; Chen, Y.; Han, J.-R.; Cui, L. Org. Biomol. Chem. 2004, 2,
2359–2364; (b) Suzuki, I.; Obata, K.; Anzai, J.; Ikeda, H.; Ueno, A. J. Chem. Soc.,
Perkin Trans. 2 2000, 1705–1710.
5. (a) Iglesias-Sa´nchez, J. C.; Wang, W.; Ferdani, R.; Prados, P.; de Mendoza, J.;
Gokel, G. W. New J. Chem. 2008, 32, 878–890; (b) Salorinne, K.; Nissinen, M.
J. Incl. Phenom. Macrocycl. Chem. 2008, 61, 11–27; (c) Hocquelet, C.; Blu, J.;
Jankowski, C. K.; Arseneau, S.; Buisson, D.; Mauclaire, L. Tetrahedron 2006, 62,
11963–11971; (d) Kim, S. K.; Sim, W.; Vicens, J.; Kim, J. S. Tetrahedron Lett. 2003,
44, 805–809; (e) Pellet-Rostaing, S.; Chitry, F.; Nicod, L.; Lemaire, M. J. Chem.
Soc., Perkin Trans. 2 2001, 1426–1432; (f) Calixarenes in Action; Mandolini, L.,
Ungaro, R., Eds.; Imperial College: London, 2000.
6. (a) Cai, Y.; Castro, P. P.; Gutierrez-Tunstad, L. M. Tetrahedron Lett. 2008, 49,
2146–2149; (b) Stoll, I.; Eberhard, J.; Brodbeck, R.; Eisfeld, W.; Mattay, J.
Chem.dEur. J. 2008, 14, 1155–1163; (c) Ihm, C.; Paek, K. Tetrahedron Lett. 2007,
48, 3263–3266; (d) Salorinne, K.; Nissinen, M. Org. Lett. 2006, 8, 5473–5476; (e)
Wright, A. J.; Matthews, S. E.; Fischer, W. B.; Beer, P. D. Chem.dEur. J. 2001, 16,
3474–3481.
16. (a) Sanders, J.; Hunter, B. K. In The Modern NMR SpectroscopydA Guide for
Chemists Oxford University: New York, NY, 1993; pp 160–176; (b) Hull, W. E.
Experimental Aspects of Two-Dimensional NMR In The Two- Dimensional NMR
SpectroscopydApplications for Chemists and Biochemists, 2nd ed.; Croasmun, W.
R., Carlson, R. M. K., Eds.; VCH: New York, NY, 1994; pp 337–343.
17. Braunschweiler, L.; Ernst, R. R. J. Magn. Reson. 1983, 53, 521–528.
18. Marion, D.; Wuthrich, K. Biochem. Biophys. Res. Commun. 1983, 113, 967–974.
19. Kay, L. E.; Keifer, P.; Saarinen, T. J. Am. Chem. Soc. 1992, 114, 10663–10665.
20. Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093–2094.
21. Karplus, M. J. Am. Chem. Soc. 1960, 82, 4431–4432.
22. Wang, A. C.; Bax, A. J. Am. Chem. Soc. 1996, 118, 2483–2494.
23. Shin-ichi, T.; Yoshihiro, K.; Akira, O.; Masatsune, K. J. Am. Chem. Soc. 1995, 117,
7277–7278.
24. Weiner, S. J.; Kollman, P. A.; Case, D. A.; Singh, U. C.; Ghio, C.; Alagona, G.;
Profeta, S.; Weiner, P. J. J. Am. Chem. Soc. 1984, 106, 765–784.
7. Gokel, G. W.; Ferdani, R.; Liu, J.; Pajewski, R.; Shabany, H.; Uetrecht, P.
Chem.dEur. J. 2001, 7, 33–39 and references cited therein.