pubs.acs.org/joc
syntheses.3 They are also crucial building blocks in the
Palladium-Catalyzed 2-Arylation of Pyrroles
synthesis of cyclic π-conjugated oligopyrrolic systems such
as porphyrins4 and other porphyrinoids.5-9 Thus, many
synthetic methods are known for the construction10 and
derivatization of pyrrole ring.11
Daniel T. Gryko,* Olena Vakuliuk, Dorota Gryko, and
Beata Koszarna
Institute of Organic Chemistry of the Polish Academy of
Sciences, Warsaw, Poland
Aryl-substituted pyrrole derivatives can be prepared via
Suzuki coupling of N-substituted 2-bromopyrroles with
boronic acids12 or from N-protected pyrroleboronic acids
esters and aryl bromides.13 These strategies, however, cannot
be applied to N-alkylpyrroles since bromo derivatives of
these compounds lack an N-electron-withdrawing protecting
group and hence are not stable. Such N-alkyl-2-arylpyrroles
could be prepared via direct coupling as increased popularity
of this method has been observed during the past few years.14
In comparison to indole, only a few methods for direct
arylation of pyrrole derivatives have been published. Inter-
molecular arylation of pyrrole reported by Filippini15 (later
optimized by Sadighi et al.16) requires the formation of an
Received October 2, 2009
(4) Ito, S.; Murashima, T.; Uno, H.; Ono, N. Chem. Commun. 1998, 1661–
1662.
(5) Gryko, D. T.; Fox, J. P.; Goldberg, D. P. J. Porphyrins Phthalocya-
nines 2004, 8, 1091–1105.
(6) Hannach, S.; Lynch, V. M.; Gerasimchuk, N.; Magda, D.; Sessler, J.
L. Org. Lett. 2001, 3, 3911.
(7) Sessler, J. L.; Seidel, D. Angew. Chem., Int. Ed. 2003, 42, 5134–5175.
(8) Gaze-zowski, M.; Gryko, D. T. Curr. Org. Chem. 2007, 11, 1310–1338.
(9) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R.,
Eds.; Academic Press: New York, 2000; Vols. 1-10.
(10) (a) Black, D. St. C. In Science of Synthesis; Maas, G., Ed; Thieme:
Stuttgart, 2000; Vol. 9, p 441. (b) Ferreira, V. F.; de Souza, M. C. B. V.; Cunha,
A. C.; Pereira, L. O. R.; Ferreira, M. L. G. Org. Prep. Proced. Int. 2001, 33, 411–
445. (c) Schmuck, C.; Rupprecht, D. Synthesis 2007, 3095–3110. (d) Knorr, L.;
Lange, H. Chem. Ber. 1902, 35, 2998–3008. (e) Banik, B. K.; Samajdar, S.;
Banik, I. J. Org. Chem. 2004, 69, 213–216. (f) Chen, J.; Wu, H.; Zheng, Z.; Jin,
C.; Zhang, X.; Su, W. Tetrahedron Lett. 2006, 47, 5383–5387. (g) Cyr, D. J. S.;
Martin, N.; Arndtsen, B. A. Org. Lett. 2007, 9, 449–452. (h) Kel'in, A. V.;
Sromek, A. W.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 2074.
(i) Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465. (j) Larionov,
O. V.; de Meijere, A. Angew. Chem., Int. Ed. 2005, 44, 5644–5667. (k) Milgram,
B. C.; Eskildsen, K.; Richter, S. M.; Scheidt, W. R.; Scheidt, K. A. J. Org. Chem.
2007, 72, 3941–3944. (l) Wang, Y.-F.; Toh, K. K.; Chiba, S.; Narasaka, K. Org.
Lett. 2008, 10, 5019–5022.
A methodology that affords N-alkyl-2-arylpyrroles and
N-aryl-2-arylpyrroles via direct coupling from aryl io-
dides has been developed. After examining various reac-
tion parameters: solvent, ratio of reagents, catalyst, base
and additives the optimal conditions for the condensation
were identified. Two crucial factors, (a) anhydrous
DMSO as solvent and (b) 5 M excess of pyrrole counter-
part, were found to strongly influence the reaction out-
come. The conditions identified (PdCl2(PPh3)2, AgOAc,
anhyd DMSO, KF, 100 °C, 5 h) resulted in the formation
of 2-arylpyrroles in 14-80% yield. Furthermore, the
synthesis is compatible with electron-withdrawing and
electron-donating groups on the aryl moiety.
(11) (a) Miller, R.; Olsson, K. Acta Chem. Scand. B 1981, 35, 303–310.
(b) Song, C.; Knight, D. W.; Whatton, M. A. Tetrahedron Lett. 2004, 45,
9573–9576. (c) Zhuang, W.; Jørgensen, K. A. Chem. Commun. 2002, 1336–
1337. (d) Jenner, G.; Papadopoulos, M.; Jurczak, J.; Kozluk, T. Tetrahedron
Lett. 1984, 50, 5747–5750. (e) Freitas, J. M.; Abrantes, L. M.; Darbre, T.
Helv. Chim. Acta 2005, 88, 2470–2478. (f) Beshara, C. S.; Thompson, A.
J. Org. Chem. 2005, 70, 10607–10610. (g) Gryko, D. T.; Voloshchuk, R.
J. Porphyrins Phthalocyanines 2009, 13, 390–395. (h) Lee, C.-H.; Lindsey, J.
S. Tetrahedron 1994, 50, 11427–11440. (i) Knight, L. W.; Huffman, J. W.;
Isherwood, M. L. Synlett 2003, 1993–1996.
(12) (a) Thoresen, L. H.; Kim, H.; Welch, M. B.; Burghart, A.; Burgess,
K. Synlett 1998, 1276–1278. (b) Thoresen, L. H.; Reibenspies, J.; Burgess, K.;
Bergstroem, F.; Johansson, L. B.-A. J. Org. Chem. 1999, 64, 7813–7819.
(c) Toyota, T.; Tsuha, H.; Yamada, K.; Takakura, K.; Ikegami, T.;
Sugawara, T. Chem. Lett. 2006, 35, 708–709. (d) Ikeda, C.; Sakamoto, N.;
Nabeshima, T. Org. Lett. 2008, 10, 4601–4604.
(13) (a) Pinkerton, D. M.; Banwell, M. G.; Willis, A. C. Org. Lett. 2007, 9,
5127–5130. (b) Takagi, J.; Sato, K.; Hartwig, J. F.; Ishiyama, T.; Miyaura, N.
Tetrahedron Lett. 2002, 43, 5649–5652. (c) Deng, J. Z.; Paone, D. V.;
Ginnetti, A. T.; Stauffer, S. R.; Burgey, C. S.; Kurihara, H.; Dreher, S. D.;
Weissman, S. A. Org. Lett. 2009, 11, 345–347.
(14) (a) Alberico, D.; Scot, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174–
238. (b) Joucla, L.; Djakovitch, L. Adv. Synth. Cat. 2009, 351, 673–714.
(c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed.
2009, 48, 5094–5115. (d) Satoh, T.; Miura, M. Chem. Lett. 2007, 36, 200–205.
(15) Filippini, L.; Gusmeroli, M.; Riva, R. Tetrahedron Lett. 1992, 33,
1755.
Pyrroles are abundant in natural products1 and medicinal
agents2 and serve as a number of intermediates in multistep
(1) (a) Larionov, O. V.; de Meijere, A. Angew. Chem., Int. Ed. 2005, 44,
5664–5667. (b) Garg, N. K.; Caspi, D. D.; Stoltz, B. M. J. Am. Chem. Soc.
2005, 127, 5970–5978. (c) Dhawan, R.; Arndtsen, B. A. J. Am. Chem. Soc.
2004, 126, 468–469. (d) Donohoe, T. J.; Sintim, H.; Sisangia, L.; Harling, J.
€
D. Angew. Chem., Int. Ed. 2004, 43, 2293–2296. (e) Furstner, A. Angew.
Chem., Int. Ed. 2003, 42, 3582–3603. (f) Hoffmann, H.; Lindel, T. Synthesis
2003, 1753–1783. (g) Handy, S. T.; Zhang, Y. Org. Prep. Proced. Int. 2005,
37, 411–445. (h) Walsh, C. T.; Garneau-Tsodikova, S.; Howard-Jones, A. R.
Nat. Prod. Rep. 2006, 23, 517–531. (i) Rossi, R.; Bellina, F. Tetrahedron 2006,
62, 7213–7256.
(2) (a) Baran, P. S.; Richter, J. M.; Lin, D. W. Angew. Chem., Int. Ed.
2005, 44, 609–612. (b) Naumovski, L.; Ramos, J.; Sirisawad, M.; Chen, J.;
Thieman, P.; Lecane, P.; Magda, D.; Wang, Z.; Cortez, C.; Boswell, G.; Cho,
D. G.; Sessler, J. L.; Miller, R. A. Mol. Cancer Ther. 2005, 4, 968–976.
(c) Hall, A.; Atkinson, S.; Brown, S. H.; Chesell, I. P.; Chowdhury, A.; Gibin,
G. M. P.; Goldsmith, P.; Healy, M. P.; Jandu, K. S.; Johnson, M. R.; Michel,
A. D.; Naylor, A.; Sweeting, J. A. Bioorg. Med. Chem. Lett. 2007, 17, 1200–
1205.
(3) (a) For examples in synthesis, see: F€urstner, A.; Radkowski, K.; Peters, H.
Angew. Chem., Int. Ed. 2005, 44, 2777-2781. (b) F€urstner, A. Angew. Chem.,
Int. Ed. 2003, 42, 3582–3603. (c) Johnson, J. A.; Ning, L.; Sames, D. J. Am.
Chem. Soc. 2002, 124, 6900–6903.
(16) Rieth, R. D.; Mankad, N. P.; Calimano, E.; Sadighi, J. P. Org. Lett.
2004, 6, 398.
DOI: 10.1021/jo902124c
r
Published on Web 11/11/2009
J. Org. Chem. 2009, 74, 9517–9520 9517
2009 American Chemical Society