R
SYNTHETIC COMMUNICATIONSV
9
ꢀ
[12] Wang, S.; Chen, S. Y.; Yu, X. Q. C–H Functionalization by High-Valent Cp Co(III)
[13] Yoshino, T.; Matsunaga, S. (Pentamethylcyclopentadienyl)Cobalt(III)-Catalyzed C–H Bond
Functionalization: From Discovery to Unique Reactivity and Selectivity. Adv. Synth. Catal.
[14] Bentley, K. W. b-Phenylethylamines and the Isoquinoline Alkaloids. Nat. Prod. Rep. 2006,
[15] Lim, C. W.; Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A. R.;
Hulmes, D. I.; Blacker, A. J. Practical Preparation and Resolution of 1-(20-
Diphenylphosphino-10-Naphthyl)Isoquinoline: A Useful Ligand for Catalytic Asymmetric
[16] Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.; Kamatani, J.; Igawa, S.;
Moriyama, T.; Miura, S.; Takiguchi, T.; Okada, S.; et al. Homoleptic Cyclometalated
Iridium Complexes with Highly Efficient Red Phosphorescence and Application to
Organic Light-Emitting Diode. J. Am. Chem. Soc. 2003, 125, 12971–12979. DOI: 10.1021/
[17] Fisher, N. I.; Hamer, F. M. Cyanine Dyes Containing an Isoquinoline Nucleus. J. Chem.
[18] Whaley, W.; Govindachari, T. In Organic Reactions; Adams, R., Ed.; Wiley: New York,
NY, 1951; pp 151.
[19] Gensler, W. In Organic Reactions; Adams, R., Ed.; Wiley: New York, NY, 1951; pp 191.
[20] Whaley, W.; Govindachari, T. In Organic Reactions; Adams, R., Ed.; Wiley: New York,
NY, 1951; pp 74.
[21] He, R.; Huang, Z. T.; Zheng, Q. Y.; Wang, C. Isoquinoline Skeleton Synthesis via
[22] Sen, M.; Kalsi, D.; Sundararaju, B. Cobalt(III)-Catalyzed Dehydrative [4 þ 2] Annulation
of Oxime with Alkyne by C–H and N–OH Activation. Chem. Eur. J. 2015, 21,
[23] Muralirajan, K.; Kuppusamy, R.; Prakash, S.; Cheng, C. H. Easy Access to 1-Amino and
1-Carbon Substituted Isoquinolines via Cobalt-Catalyzed C–H/N–O Bond Activation. Adv.
[24] Too, P. C.; Chua, S. H.; Wong, S. H.; Chiba, S. Synthesis of Aza Heterocycles from Aryl
Ketone O-Acetyl Oximes and Internal Alkynes by Cu–Rh Bimetallic Relay Catalysts.
[25] Parthasarathy, K.; Cheng, C. H. Easy Access to Isoquinolines and Tetrahydroquinolines
from Ketoximes and Alkynes via Rhodium-Catalyzed C–H Bond Activation. J. Org. Chem.
[26] Zheng, L.; Ju, J.; Bin, Y.; Hua, R. Synthesis of Isoquinolines and Heterocycle-Fused
Pyridines via Three-Component Cascade Reaction of Aryl Ketones, Hydroxylamine, and
[27] Zhang, S.; Huang, D.; Xu, G.; Cao, S.; Wang, R.; Peng, S.; Sun, J. An Efficient Synthesis of
Isoquinolines via Rhodium-Catalyzed Direct C–H Functionalization of Arylhydrazones.
[28] Huang, X. C.; Yang, X. H.; Song, R. J.; Li, J. H. Rhodium-Catalyzed Synthesis of
Isoquinolines and Indenes from Benzylidenehydrazones and Internal Alkynes. J. Org.
[29] Chuang, S. C.; Gandeepan, P.; Cheng, C. H. Synthesis of Isoquinolines via Rh(III)-
Catalyzed C–H Activation Using Hydrazone as a New Oxidizing Directing Group. Org.
[30] Liu, W.; Hong, X.; Xu, B. Rhodium-Catalyzed Oxidative Coupling of Aryl Hydrazones
with Internal Alkynes: Efficient Synthesis of Multisubstituted Isoquinolines. Synthesis