7530
L. H. A. Prins et al. / Bioorg. Med. Chem. 17 (2009) 7523–7530
2. Jellinger, K. A. J. Neural Transm. 2003, 65, 101.
Purification and desalting of the resulting oxyHb solution was per-
formed using a SephadexÒ G-25 column.
The test compounds were dissolved in DMSO to yield a concen-
tration of 5% DMSO in the final incubation mixtures. The incuba-
tions contained HEPES (500 lM), test inhibitor, CaCl2 (250 lM)
and tissue homogenate (2.36 mg of the original brain tissue) and
3. Smid, P.; Coolen, H. K. A. C.; Keizer, H. G.; Van Hes, R.; De Moes, J.-P.; Den
Hartog, A. P.; Stork, B.; Plekkenpol, R. H.; Niemann, L. C.; Stroomer, C. N. J.; Tulp,
M. T. M.; Van Stuivenberg, H. H.; McCreary, A. C.; Hesselink, M. B.; Herremans,
A. H. J.; Kruse, C. G. J. Med. Chem. 2005, 48, 6855.
4. Saura, J.; Bleuel, Z.; Ulrich, J.; Mendelowitsch, A.; Chen, K.; Shih, J. C.; Malherbe,
P.; Da Prada, M.; Richards, J. G. Neuroscience 1996, 70, 755.
5. Fowler, C. J.; Wiberg, A.; Oreland, L.; Marcusson, J.; Winblad, B. J. Neural Transm.
(Gen. Sect.) 1980, 49, 1.
were pre-incubated for 3 min at 37 °C before the reaction was
6. Maimone, D.; Dominici, R.; Grimaldi, L. M. E. Eur. J. Pharmacol. 2001, 413, 11.
7. Saura, J.; Luque, J. M.; Cesura, A. M.; Da Prada, M.; Chan-Palay, V.; Huber, G.;
Loffler, J.; Richards, J. G. Neuroscience 1994, 62, 15.
started by the addition of oxyHb (ꢂ1.09
lM), NADPH (100 lM)
and -arginine (100 M). UV–vis scans (1 scan every 10 s) were re-
L
l
corded between 390 and 430 nm for a period of 10 min. The metHb
production was estimated by subtracting the absorbance at
411 nm from the absorbance at 401 nm. The IC50 values for the
inhibition of NOS were determined from plots of the rate of metHb
formation versus the logarithm of the inhibitor concentration. For
this purpose PrismÒ 4.02 was used.
8. Palmer, R. M. J.; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524.
9. Moncada, S.; Palmer, R. M. J.; Higgs, E. A. Biochem. Pharmacol. 1989, 38, 1709.
10. Hibbs, J. B., Jr.; Vavrin, Z.; Taintor, R. R. J. Immunol. 1987, 138, 550.
11. Garthwaite, J. In Nitric Oxide from l-Arginine: A Bioregulatory System; Moncada,
S., Higgs, E. A., Eds.; Elsevier: Amsterdam, 1990; pp 115–137.
12. Burnett, A. L.; Lowenstein, C. J.; Bredt, D. S.; Chang, T. S. K.; Snyder, S. H. Science
1992, 257, 401.
13. Cheshire, D. R. IDrugs 2001, 4, 795.
14. Endres, M.; Laufs, U.; Liao, J. K.; Moskowitz, M. A. Trends Neurosci. 2004, 27, 283.
15. Togo, T.; Katsuse, O.; Iseki, E. Neurol. Res. 2004, 26, 563.
16. Dawson, V.; Dawson, T.; Bartley, D.; Uhl, G.; Snyder, S. J. Neurosci. 1993, 13,
2651.
17. Dawson, V. L.; Dawson, T. M. J. Chem. Neuroanat. 1996, 10, 179.
18. Chen, J.-F.; Xu, K.; Petzer, J. P.; Staal, R.; Xu, Y.-H.; Beilstein, M.; Sonsalla, P.
K.; Castagnoli, K.; Castagnoli, N., Jr.; Schwarzschild, M. A. J. Neurosci. 2001,
21, 143.
19. Petzer, J. P.; Steyn, S.; Castagnoli, K. P.; Chen, J.-F.; Schwarzschild, M. A.; Van der
Schyf, C. J.; Castagnoli, N., Jr. Bioorg. Med. Chem. 2003, 11, 1299.
20. Chen, J.-F.; Steyn, S.; Staal, R.; Petzer, J. P.; Xu, K.; Van der Schyf, C. J.;
Castagnoli, K.; Sonsalla, P. K.; Castagnoli, N., Jr.; Schwarzschild, M. A. J. Biol.
Chem. 2002, 277, 36040.
21. Vlok, N.; Malan, S. F.; Castagnoli, N., Jr.; Bergh, J. J.; Petzer, J. P. Bioorg. Med.
Chem. 2006, 14, 3512.
22. Crane, B. R.; Arvai, A. S.; Ghosh, D. K.; Wu, C.; Getzoff, E. D.; Stuehr, D. J.; Tainer,
J. A. Science 1998, 279, 2121.
23. Raman, C. S.; Li, H.; Martásek, P.; Král, V.; Masters, B. S. S.; Poulos, T. L. Cell
1998, 95, 939.
24. Mayer, B.; Werner, E. R. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1995, 351,
453.
25. Werner, E. R.; Pitters, E.; Schmidt, K.; Wachter, H.; Werner-Felmayer, G.;
Mayer, B. Biochem. J. 1996, 320, 193.
26. Yoneda, F.; Higuchi, M. J. Chem. Soc., Perkin Trans. 1 1977, 11, 1336.
27. Inoue, H.; Castagnoli, K.; Van der Schyf, C.; Mabic, S.; Igarashi, K.; Castagnoli, N.,
Jr. J. Pharmacol. Exp. Ther. 1999, 291, 856.
28. Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
29. Salter, M.; Knowles, R. G. In Nitric Oxide Protocols; Titheradge, M. A., Ed.;
Humana Press: Totowa, NJ, 1998; pp 61–65.
30. Salter, M.; Knowles, R. G.; Moncada, S. FEBS Lett. 1991, 291, 145.
31. Joubert, J.; Van Dyk, S.; Malan, S. F. Bioorg. Med. Chem. 2008, 16, 8952.
32. Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.
E.; Mattevi, A. J. Med. Chem. 2007, 50, 5848.
5.4. Molecular modeling
All computational studies were carried out with Discovery
StudioÒ 1.7 (Accelrys Software Inc., San Diego, CA). The crystal
structure of human MAO-B (PDB code: 2V5Z)32 recovered from
as receptor model for the docking procedure. Manipulation of the
crystal structure followed wherein the valences of the co-crystal-
lised ligand (safinamide) and FAD cofactor were corrected and
hydrogen atoms added. The receptor protein was then typed by
applying the CHARMm forcefield before performing a three-step
minimisation protocol (steepest descent, conjugate gradient and
adopted basis Newton–Rapheson), wherein the protein backbone
was kept rigid and the Generalised Born with Simple Switching im-
plicit solvation model was used to account for the effects of the
aqueous environment. Minimisation of the receptor protein was
considered necessary since the protein X-ray structure might con-
tain residual energetic tensions from the crystallisation process.
The safinamide (in the A chain) was subsequently eliminated from
the energy-minimised receptor protein and the backbone con-
straint was removed, where after it was used as the starting model
for the docking simulation. The ligands to be docked were first con-
structed within DS Visualizer ProÒ and then prepared for the dock-
ing simulations employing the Prepare Ligands application of
Discovery StudioÒ 1.7. The structures were docked into the receptor
model with the LigandFit application, which applied total ligand
flexibility whereby the final ligand conformations were determined
by the Monte Carlo conformation search method set to a variable
number of trial runs. The docked ligand conformations were further
refined using in situ ligand minimisation with the Smart Minimizer
algorithm. The best solution for each docked ligand was adjudged
by the DockScore scoring function of LigandFit. All the application
modules within Discovery StudioÒ 1.7 were set to their default val-
ues and 10 docking solutions were allowed for each ligand.
33. Binda, C.; Li, M.; Hubálek, F.; Restelli, N.; Edmondson, D. E.; Mattevi, A. Proc.
Natl. Acad. Sci. U.S.A. 2003, 100, 9750.
34. Boström, J.; Greenwood, J. R.; Gottfries, J. J. Mol. Graphics Modell. 2003, 21, 449.
35. Pretorius, J.; Malan, S. F.; Castagnoli, N., Jr.; Bergh, J. J.; Petzer, J. P. Bioorg. Med.
Chem. 2008, 16, 8676.
36. Morphy, R.; Rankovic, Z. J. Med. Chem. 2005, 48, 6523.
37. Youdim, M. B. H.; Buccafusco, J. J. J. Neural Transm. 2005, 112, 519.
38. Van den Berg, D.; Zoellner, K. R.; Ogunrombi, M. O.; Malan, S. F.; Terre’Blanche,
G., ; Castagnoli, N., Jr.; Bergh, J. J.; Petzer, J. P. Bioorg. Med. Chem. 2007, 15,
3692.
39. Pitts, S. M.; Markey, S. P.; Murphy, D. L.; Weisz, A. In MPTP: A Neurotoxin
Producing a Parkinsonian Syndrome; Markey, S. P., Castagnoli, N., Jr., Trevor, A. J.,
Kopin, I. J., Eds.; Academic Press: New York, 1986; pp 703–716.
40. Blicke, F. F.; Godt, H. C. J. Am. Chem. Soc. 1954, 76, 2798.
41. Baker, B. R.; Janson, E. E.; Vermeulen, N. M. J. J. Med. Chem. 1969, 12, 898.
42. Bissel, P.; Bigley, M. C.; Castagnoli, K.; Castagnoli, N., Jr. Bioorg. Med. Chem.
2002, 10, 3031.
Acknowledgement
The authors would like to express their gratitude towards the
National Research Foundation (South Africa) for financial support.
43. Salach, J. I.; Weyler, W. Methods Enzymol. 1987, 142, 627.
44. Bradford, M. M. Anal. Biochem. 1976, 72, 248.
45. Gnerre, C.; Catto, M.; Leonetti, F.; Weber, P.; Carrupt, P.-A.; Altomare, C.;
Carotti, A.; Testa, B. J. Med. Chem. 2000, 43, 4747.
References and notes
46. Corbett, J. A.; McDaniel, M. L. Methods 1996, 10, 21.
1. Van der Schyf, C. J.; Geldenhuys, W. J.; Youdim, M. B. H. J. Neurochem. 2006, 99,
1033.