4a. Similar to 1a by using 4 and Pd(COD)Cl2. Yield: 40 mg
97) and refined by full-matrix least-squares procedures (based on
F2, SHELXL-97)35 with anisotropic thermal parameters for all the
non-hydrogen atoms. The hydrogen atoms were introduced into
the geometrically calculated positions (SHELXS-97 procedures)
and refined riding on the corresponding parent atoms, with the
exception of those of 3, which were found in the DF2 maps an
refined isotropically. A MULTISCAN absorption correction was
applied for 3b.36
(90%). Found C, 39.89; H, 3.33; N, 12.87% C14H12N4Cl2Pd requires
1
C, 40.66; H, 2.92; N, 13.55%; H NMR (250 MHz, dmso-d6):
d/ppm 5.78 (s, 2H, –CH2–, benzyl), 7.30–7.48 (m, 5H, phenylH,
3
4
3
benzyl), 7.62 (dt, J = 6.6 Hz, J = 1.5 Hz, 1H), 8.22 (d, J =
7.7 Hz, 1H), 8.33 (dt, 3J = 7.6 Hz, 4J = 1.4 Hz, 1H), 9.18 (d, 3J =
5.3 Hz, 1H, 6-pyridylH), 9.28 (s, 1H, 5-triazoleH).
1b. Ligand 1 (50 mg, 0.19 mmol) and Pt(dmso)2Cl2 (80.0 mg,
0.19 mmol) were dissolved in nitromethane and refluxed for 5
h. After removing the solvent diethylether was added and the
precipitate was filtered. The compound was washed with acetone
(10 mL) and was dried in vacuo to give the desired product. Yield:
80 mg (80%). Found C, 36.03; H, 3.28; N, 9.93% C16H16N4Cl2Pt
requires C, 36.24; H, 3.04; N, 10.56%; 1H NMR (250 MHz,
CDCl3): d/ppm 1.26 (d, 3J = 6.6 Hz, 6H, –CH3, isopropyl), 2.97
(sept., 1H, –CH, isopropyl), 7.22 (t, 3J = 6.3 Hz, 1H), 7.40 (d, 3J =
8.5 Hz, 2H), 7.70 (d, 3J = 8.3 Hz, 2H), 7.78 (t, 3J = 7.4 Hz, 1H),
8.30 (d, 3J = 7.5 Hz, 1H), 8.78 (s, 1H, 4JPt–H = 11 Hz, 5-triazoleH),
9.12 (d, 3J = 4.5 Hz, 3JPt–H = 32 Hz, 1H, 6-pyridylH).
Acknowledgements
B. S. is indebted to the LANDESSTIFTUNG Baden-
Wuerttemberg for the financial support of this research project
through the Eliteprogramme for Postdocs. Prof. P. Braunstein
is kindly acknowledged for access to the X-ray facilities of the
Universite´ de Strasbourg.
References
1 R. Huisgen, R. Knorr, L. Mo¨bius and G. Szeimies, Chem. Ber., 1965,
98, 4014.
2 R. Huisgen, G. Szeimies and L. Mo¨bius, Chem. Ber., 1967, 100, 2494.
3 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew.
Chem., Int. Ed., 2002, 41, 2596.
4 C. W. Tornoe, C. Christensen and M. Meldal, J. Org. Chem., 2002, 67,
3057.
5 W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun., 2007,
28, 15.
6 J. A. Opsteen and J. C. M. v. Hest, Chem. Commun., 2005, 57.
7 D. Samanta, K. Kratz, X. Zhang and T. Emrick, Macromolecules, 2008,
41, 530.
8 H. C. Kolb and K. B. Sharpless, Drug Discovery Today, 2003, 8, 1128.
9 R. A. Evans, Aust. J. Chem., 2007, 60, 384.
10 P. Wu and V. V. Fokin, Aldrichimica Acta, 2007, 40, 7.
11 D. Schweinfurth, K. I. Hardcastle and U. H. F. Bunz, Chem. Commun.,
2008, 2203.
2b. Similar to 1b by using 2 and Pt(dmso)2Cl2. Yield: 75 mg
(75%). Found C, 36.66; H, 3.42; N, 10.96% C16H16N4Cl2Pt requires
C, 36.24; H, 3.04; N, 10.56%; 1H NMR (250 MHz, CDCl3): d/ppm
2.01 (s, 6H, o-CH3 groups, mesityl), 2.33 (s, 3H, p-CH3 group,
mesityl), 6.92 (s, 2H, phenylH, mesityl), 7.49 (t, 3J = 6.6 Hz, 1H),
3
3
7.82 (d, J = 7.6 Hz, 1H), 8.12 (t, J = 6.4 Hz, 1H),8.20 (s, 1H,
4JPt–H = 10 Hz, 5-triazoleH), 9.42 (d, 3J = 4.8 Hz, 3JPt–H = 32 Hz,
1H, 6-pyridylH).
3b. Similar to 1b by using 3 and Pt(dmso)2Cl2. Yield: 83.5
mg (90%). Found C, 31.66; H, 1.86; N, 11.75% C13H10N4Cl2Pt
requires C, 31.98; H, 2.06; N, 11.48%; 1H NMR (250 MHz, dmso-
d6): d/ppm 7.63–7.78 (m, 5H, phenylH), 7.91 (d, 3J = 6.6 Hz, 1H),
8.17 (d, 3J = 7.7 Hz, 1H), 8.40 (t, 3J = 7.8 Hz, 1H), 9.36 (d, 3J =
5.1 Hz, 3JPt–H = 32 Hz, 1H, 6-pyridylH), 9.87 (s, 1H, 5-triazoleH).
12 Y. Li, J. C. Huffman and A. H. Flood, Chem. Commun., 2007,
2692.
13 B. Schulze, C. Friebe, M. D. Hager, A. Winter, R. Hoogenboom, H.
Go¨rls and U. S. Schubert, Dalton Trans., 2009, 787.
14 B. Happ, C. Friebe, A. Winter, M. D. Hager, R. Hoogenboom and U.
S. Schubert, Chem.–Asian J., 2009, 4, 154.
15 J. T. Fletcher, B. J. Bumgarner, N. D. Engels and D. A. Skoglund,
Organometallics, 2008, 27, 5430.
16 P. S. Donnelly, S. D. Zanatta, S. C. Zammit, J. M. White and S. J.
Williams, Chem. Commun., 2008, 2459.
17 H. Struthers, B. Spingler, T. L. Mindt and R. Schibli, Chem.–Eur. J.,
2008, 14, 6173.
18 M. Obata, A. Kitamura, A. Mori, C. Kameyama, J. A. Czaplewska,
R. Tanaka, I. Kinoshita, T. Kusumoto, H. Hashimoto, M. Harada, Y.
Mikata, T. Funabiki and S. Yano, Dalton Trans., 2008, 3292.
19 A. Maisonial, P. Serafin, M. Traikia, E. Debiton, V. The´ry, D. J. Aitken,
P. Lemoine, B. Viossat and A. Gautier, Eur. J. Inorg. Chem., 2008,
298.
20 B. M. J. M. Suijkerbuijk, B. N. H. Aerts, H. P. Dijkstra, M. Lutz, A.
L. Spek, G. v. Koten and R. J. M. K. Gebbink, Dalton Trans., 2007,
1273.
4b. Similar to 1b by using 4 and Pt(dmso)2Cl2. Yield: 67 mg
(70%). Found C, 32.81; H, 2.48; N, 10.95% C14H12N4Cl2Pt requires
1
C, 33.48; H, 2.41; N, 11.16%; H NMR (250 MHz, dmso-d6):
d/ppm 5.82 (s, 2H, –CH2–, benzyl), 7.34–7.53 (m, 5H, phenylH,
3
4
3
benzyl), 7.68 (dt, J = 6.8 Hz, J = 1.6 Hz, 1H), 8.19 (d, J =
7.5 Hz, 1H), 8.31 (dt, 3J = 7.8 Hz, 4J = 1.3 Hz, 1H), 9.20 (s, 1H,
4JPt–H = 12 Hz, 5-triazoleH), 9.32 (d, 3J = 5.4 Hz, 3JPt–H = 33 Hz,
1H, 6-pyridylH).
Crystallographic details†
X-Ray data collection, structure solution and refinement for all
compounds
Ligand
3
was crystallised by slow evaporation of
a
21 B. Lippert, Cisplatin, Wiley-VCH, 1999.
dichloromethane solution of the compound layered with n-hexane
at ambient temperatures. Compound 1a could be crystallised
by slow evaporation of a MeOH–dichloromethane solution and
compound 3b by slow evaporation of a nitromethane solution. The
intensity data were collected on a Kappa CCD diffractometer34
22 W. B. Connick, V. M. Miskowski, V. H. Houlding and H. B. Gray,
Inorg. Chem., 2000, 39, 2585.
23 L. Johansson and M. Tilset, J. Am. Chem. Soc., 2001, 123, 739.
24 X. Fang, B. L. Scott, J. G. Watkin and G. J. Kubas, Organometallics,
2000, 19, 4193.
25 P. Braunstein, J. Organomet. Chem., 2004, 689, 3953.
26 S. Komeda, M. Lutz, A. L. Speck, Y. Yamanaka, T. Sato, M. Chikuma
and J. Reedijk, J. Am. Chem. Soc., 2002, 124, 4738.
27 M. B. Cingi, M. Lanfranchi, M. A. Pellinghelli and M. Tegoni, Eur. J.
Inorg. Chem., 2000, 703.
˚
(graphite monochromated Mo Ka radiation, l = 0.71073 A) at
173(2) K for 1a and 3b and at 100(2) K for 3. Crystallographic
and experimental details for the structures are summarised in
Table 1. The structures were solved by direct methods (SHELXS-
28 S. Das and B. K. Panda, Polyhedron, 2006, 25, 2289.
9296 | Dalton Trans., 2009, 9291–9297
This journal is
The Royal Society of Chemistry 2009
©