Y. Saito et al. / Tetrahedron 65 (2009) 934–939
939
then evaporated to dryness. The residue was dissolved in EtOAc and
was washed with aq NaHCO3 and brine. The organic layer was
separated, dried over anhydrous Na2SO4 and evaporated to dryness
and was subsequently used for oligodeoxynucleotide synthesis
without further purification.
UV-2550 spectrophotometer at room temperature using 1 cm path
length cell.
4.3.4. Fluorescence measurements
ODN solutions were prepared as described in Tm measurement
experiment. Fluorescence spectra were obtained using a Shimadzu
RF-5300PC spectrophotometer at 25 ꢀC using 1 cm path length cell.
The excitation and the emission bandwidth was 1.5 nm.
4.3. Oligonucleotide synthesis and characterization
All the reagents for DNA synthesis were purchased from Glen
Research. ODNs were synthesized by a conventional phosphor-
amidite method by using an Applied Biosystems 3400 DNA/RNA
synthesizer. ODNs were purified by reverse phase HPLC on a 5-
ODS-H column (10ꢁ150 mm, elution with 50 mM ammonium for-
mate buffer (AF), pH 7.0, linear gradient over 45 min from 3% to 40%
acetonitrile at a flow rate 2.0 ml/min). ODNs containing modified
nucleotides were fully digested with calf intestine alkaline phos-
phatase (50 U/ml), and P1 nuclease (50 U/ml) at 37 ꢀC for 12 h.
Digested solutions were analyzed by HPLC on a CHEMCOBOND 5-
ODS-H column (4.6ꢁ150 mm, elution with a solvent mixture of
50 mM AF buffer, pH 7.0, flow rate 1.0 ml/min). The concentration
of each ODNs was determined by comparing peak areas with
a standard solution containing dA, dC, dG, and dT at a concentration
of 0.1 mM. Mass spectra of ODNs purified by HPLC were determined
with a MALDI-TOF mass spectrometer.
4.3.5. MALDI-TOF mass spectral data for the ODNs
See Table 3.
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific re-
search of MEXT, Japanese Government. Author S.S.B. is thankful to
JSPS for an individual fellowship.
Supplementary data
Some photophysical spectra, copies of 1H, 13C NMR spectra of
selected compounds. This material is available free of charge via the
with this article can be found in the online version, at doi:10.1016/
4.3.1. Synthesis of modified G-quenched molecular beacons (MB)
The fluorophores were post-synthetically incorporated into
alkylamino substituted MB to get desired molecular beacons, MB2,
3, 5, 6, and 8. Thus, active esters (1.0 mg) were dissolved in a small
References and notes
1. (a) Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303; (b) Tyagi, S.; Bratu, D. P.;
Kramer, F. R. Nat. Biotechnol. 1998, 16, 49; (c) Thurley, S.; Roglin, L.; Seitz, O.
J. Am. Chem. Soc. 2007, 129, 12693; (d) Sandhya, S.; Chen, W.; Mulchandani, A.
Anal. Chim. Acta 2008, 614, 208.
amount of dry DMF (20
ml) and added to amino modified MBs
(20 l) in a total volume of 150
m
m
l of 1.0 M NaHCO3 and incubated
for 8 h at 37 ꢀC. Purification and the characterization of the prod-
ucts were performed according to the standard procedure as
described above.
2. (a) Du, H.; Disney, M. D.; Miller, B. L.; Krauss, T. D. J. Am. Chem. Soc. 2003, 125,
4012; (b) Yang, C. J.; Tan, W. J. Am. Chem. Soc. 2005, 127, 12772; (c) Stoermer, R.
L.; Cederquist, K. B.; McFarland, S. K.; Sha, M. Y.; Penn, S. G.; Keating, C. D. J. Am.
Chem. Soc. 2006, 128, 16892; (d) Cazzato, A.; Capobianco, M. L.; Zambianchi, M.;
Favaretto, L.; Bettini, C.; Barbarella, G. Bioconjugate Chem. 2007, 18, 318; (e)
Grossmann, T. N.; Roglin, L.; Seitz, O. Angew. Chem., Int. Ed. 2007, 46, 5223; (f)
Conlon, P.; Yang, C. J.; Wu, Y.; Chen, Y.; Martinez, K.; Kim, Y.; Stevens, N.; Marti,
A. A.; Jockusch, S.; Turro, N. J.; Tan, W. J. Am. Chem. Soc. 2008, 130, 336.
3. (a) Ranasinghe, R. T.; Brown, T. Chem. Commun. 2005, 5487; (b) Seo, Y. J.; Ryu, J.
H.; Kim, B. H. Org. Lett. 2005, 7, 4931; (c) Saito, Y.; Mizuno, E.; Bag, S. S.; Suzuka,
I.; Saito, I. Chem. Commun. 2007, 4492; (d) Hwang, G. T.; Seo, Y. J.; Kim, B. H. J.
Am. Chem. Soc. 2004, 126, 6528; (e) Friedrich, A.; Hoheisel, J. D.; Marme, N.;
Knemeyer, J.-P. FEBS Lett. 2007, 581, 1644; (f) Venkatesan, N. Y.; Seo, J.; Kim, B. H.
Chem. Soc. Rev. 2008, 37, 648; (g) Saito, Y.; Shinohara, Y.; Bag, S. S.; Takeuchi, Y.;
Matsumoto, K.; Saito, I. Nucleic Acids Symposium Series No. 52; Oxford Journals:
Oxford University Press, 2008; p 361.
4. (a) Okamoto, A.; Tainaka, K.; Saito, I. J. Am. Chem. Soc. 2003, 125, 4972; (b)
Okamoto, A.; Tainaka, K.; Saito, I. J. Am. Chem. Soc. 2004, 126, 4820; (c) For
a review see: Okamoto, A.; Saito, Y.; Saito, I. J. Photochem. Photobiol., C: Photo-
chem. Rev. 2005, 6, 108; (d) Saito, Y.; Bag, S. S.; Kusakabe, Y.; Nagai, C.; Mat-
sumoto, K.; Kodate, S.; Suzuka, I.; Saito, I. Chem. Commun. 2007, 2133; (e)
Tainaka, K.; Tanaka, K.; Ikeda, S.; Nishiza, K.-i.; Unzai, T.; Fujiwara, Y.; Saito, I.;
Okamoto, A. J. Am. Chem. Soc. 2007, 129, 4776; (f) Fujimoto, K.; Yoshino, H.; Ami,
T.; Yoshimura, Y.; Saito, I. Org. Lett. 2008, 10, 397; (g) Saito, Y.; Motegi, K.; Bag,
S. S.; Saito, I. Bioorg. Med. Chem. 2008, 16, 107.
4.3.2. Melting temperature (Tm) measurements
All Tms of the ODNs (2.5 mM, final duplex concentration) were
taken in 50 mM sodium phosphate buffers (pH 7.0) containing
100 mM sodium chloride. Absorbance versus temperature profiles
were measured at 260 nm using a Shimadzu UV-2550 spectro-
photometer equipped with a Peltier temperature controller using
1 cm path length cell. The absorbance of the samples was moni-
tored at 260 nm from 4 ꢀC to 90 ꢀC with a heating rate of 1 ꢀC/min.
From these profiles, first derivatives were calculated to determine
Tm values.
4.3.3. UV absorption measurements
ODN solutions were prepared as described in Tm measurement
experiment. Absorption spectra were obtained using a Shimadzu
5. (a) Chen, P.; He, C. J. Am. Chem. Soc. 2004, 126, 728; (b) Dash, C.; Raush, J. W.; Le
Grice, S. F. J. Nucleic Acids Res. 2004, 32, 1539; (c) Marti, A. A.; Jockusch, S.; Li, Z.;
Ju, J.; Turro, N. J. Nucleic Acids Res. 2006, 34, e50.
6. (a) Inoue, H.; Imura, A.; Ohtsuka, E. Nippon Kagaku Kaishi 1987, 7, 1214; (b)
Hudson, R. H. E.; Dambenieks, A. K. Heterocycles 2006, 68, 1325.
7. Sonogashira, K.; Tohoda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467.
8. (a) Liu, C.; Martin, C. T. J. Biol. Chem. 2002, 277, 2725; (b) Crisp, G. T.; Flynn, B. L.
J. Org. Chem. 1993, 58, 6614; (c) McGuigan, C.; Yarnold, C. J.; Jones, G.; Ve-
lazquez, S.; Barucki, H.; Brancale, A.; Andrei, G.; Snoeck, R.; De Clercq, E.; Bal-
zarini, J. J. Med. Chem. 1999, 42, 4479; (d) McGuigan, C.; Barucki, H.; Blewett, S.;
Carangio, A.; Erichsen, J. T.; Andrei, G.; Snoeck, R.; De Clercq, E.; Balzarini, J.
J. Med. Chem. 2000, 43, 4993.
9. For base-promoted cyclizations of other 5-substituted uracils and uridines, see:
(a) Bleackley, R. C.; Jones, A. S.; Walker, R. T. Tetrahedron 1976, 32, 2795; (b)
Kumar, R.; Knaus, E. E.; Wiebe, L. I. J. Heterocycl. Chem. 1991, 28, 1917; (c) Eger,
K.; Jalalian, M.; Schmidt, M. J. Heterocycl. Chem. 1995, 32, 211; (d) Kumar, R.;
Wiebe, L. I.; Knaus, E. E. Can. J. Chem. 1996, 74, 1609.
Table 3
MALDI-TOF mass spectral data for the ODNs
ODNs
MALDI-TOF mass
MALDI-TOF mass
calcd [MþH]þ
found [MþH]þ
ODN 1
ODN 2
ODN 3
ODN 4
ODN 10 MB1
ODN 11 MB2
ODN 12 MB3
ODN 13 MB4
ODN 14 MB5
ODN 15 MB6
ODN 16 MB7
ODN 17 MB8
3957.68
3927.66
4185.93
4155.90
7745.15
7973.40
8041.48
8361.57
8589.83
8657.90
8361.57
8657.90
3956.97
3928.47
4186.72
4156.27
7745.14
7972.97
8041.12
8361.04
8590.02
8658.83
8361.62
8657.09
10. Woo, J.; Meyer, R. B., Jr.; Gamper, H. B. Nucleic Acids Res. 1996, 24, 2470.
11. Bijapur, J.; Keppler, M. D.; Bergqvist, S.; Brown, T.; Fox, K. R. Nucleic Acids Res.
1999, 27, 1802.