R. Haggam et al. / Tetrahedron Letters 50 (2009) 6627–6630
6629
To evaluate the scope of the transformation of nitroarenes into
(EtO)3P=O
Ar NO2
(EtO)3P
Ar NO
+
+
+
+
+
phosphoramidates we examined the effects of substitution on the
aromatic ring. A range of substituents at different positions of the
aromatic ring was tested. To this end the transformation was per-
formed with a number of mono-, di- and trisubstituted nitroarenes
using the optimized protocol (Scheme 4, Table 5). It could be estab-
lished that a number of nitroarenes carrying one or two methyl
groups can be successfully transformed into the corresponding
N-arylphosphoramidates 3b–g. However, the method is not re-
stricted to methyl-substituted nitroarenes. It is also possible to
successfully convert substrates with methoxy-, halide-, methoxy-
carbonyl-, and cyano-substituents (1h–o) into the corresponding
N-arylphosphoramidates 3h–o.23 Yields were in the range between
52% and 79%; side product formation was negligible.
1
2a
5
6a
(EtO)3P
Ar NO
Ar
N
(EtO)3P=O
5
7
6a
2a
(EtO)3P
Ar
N
Ar-N=P(OEt)3
2a
7
8
Ar-N=P(OEt)3
ArNHP(O)(OEt)2
8
3
The structures of diethyl N-arylphosphoramidates 3a–o
described here have been elucidated unambiguously by NMR-
spectroscopic methods including HH-COSY, HMBC, and HSQC
experiments.
Scheme 5. Proposal for the reaction mechanism.
Acknowledgments
We assume that in the first step of the reaction cascade the
nitroarene 1 is reduced with triethyl phosphite (2a) to the corre-
sponding nitrosoarene 5 and triethyl phosphate (6a) (Scheme
5).24 Further reduction with triethyl phosphite (2a) gives the aryl-
nitrene 7 which reacts with 2a to yield the N-arylphosphorimidate
8 as an intermediate. The latter undergoes hydrolysis under the
conditions of workup/purification by chromatography to afford
the N-arylphosphoramidate 3. In accordance with this proposal
the N-arylphosphoramidates 3 could not be obtained when aniline
(9) was treated with an excess of either triethyl phosphite (2a) or
triethyl phosphate (6a) under various reaction conditions.
Our results demonstrate that—in contrast to previous reports—
the reaction of nitroarenes with trialkyl phosphites is a practical
and reliable method for the selective preparation of dialkyl N-aryl-
phosphoramidates if performed under suitable reaction conditions.
R. Haggam is grateful to the Ministry of Higher Education,
Egypt, for the award of a Ph.D. fellowship. We thank Ms. S. Mika,
Dr. H. Leutbecher, and Dipl.-Chem. F. Mert-Balci for the recording
of NMR and mass spectra.
References and notes
1. For selected reviews on antisense oligonucleotides, see for example: (a) De
Mesmaeker, A.; Häner, R.; Martin, P.; Moser, H. E. Acc. Chem. Res. 1995, 28, 366;
(b) Uhlmann, E.; Peyman, A. Chem. Rev. 1990, 90, 543.
2. (a) Awad, A. M.; Sobkowski, M.; Seliger, H. Nucleosides, Nucleotides, Nucleic Acids
2004, 23, 777; (b) Faria, M.; Spiller, D. G.; Dubertret, C.; Nelson, J. S.; White, M.
R. H.; Scherman, D.; Hélène, C.; Giovannangeli, C. Nat. Biotechnol. 2001, 19, 40;
(c) Skorski, T.; Perrotti, D.; Nieborowska-Skorska, M.; Gryaznov, S.; Calabretta,
B. Proc. Natl. Acad. U.S.A. 1997, 94, 3966; (d) Heidenreich, O.; Gryaznov, S.;
Nerenberg, M. Nucleic Acids Res. 1997, 25, 776; (e) Gryaznov, S.; Skorski, T.;
Cucco, C.; Nieborowska-Skorska, M.; Chiu, C. Y.; Lloyd, D.; Chen, J. K.;
Koziolkiewicz, M.; Calabretta, B. Nucleic Acids Res. 1996, 24, 1508; (f)
Gryaznov, S. M.; Chen, J. K. J. Am. Chem. Soc. 1994, 116, 3143.
R2
R2
´
3. For a review, see: (a) Venkatachalam, T. K.; Goodman, P. A.; Qazi, S.; DCruz, O.;
toluene
MW / 300 W
200 °C
Uckun, F. M. Curr. Pharm. Design 2004, 10, 1713; (b) Venkatachalam, T. K.;
Samuel, P.; Qazi, S.; Uckun, F. M. Bioorg. Med. Chem. 2005, 13, 5408; (c) Uckun,
F. M.; Samuel, P.; Qazi, S.; Chen, C.; Pendergrass, S.; Venkatachalam, T. K.
Antiviral Chem. Chemother. 2002, 13, 197; (d) Freel Meyers, C. L.; Borch, R. F. J.
Med. Chem. 2000, 43, 4319.
R3
R4
R1
R3
R4
R1
O
P
OEt
OEt
(EtO)3P
N
H
NO2
4. Wuts, P. G. M.; Greene, T. W. Green´es Protective Groups in Organic Synthesis, 4th
R5
R5
ed.; Wiley: New Jersey, 2006. pp 844–847.
1
2a
3
5. Ciufolini, M. A.; Spencer, G. O. J. Org. Chem. 1989, 54, 4739.
6. Zwierzak, A.; Brylikowska-Piotrowicz, J. Angew. Chem., Int. Ed. 1977, 16, 107.
7. Minami, T.; Ogata, M.; Hirao, I.; Tanaka, M.; Agawa, T. Synthesis 1982, 231.
8. Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C. Tetrahedron Lett. 2008, 49, 687.
9. Yadav, L. D. S.; Srivastava, V. P.; Patel, R. Tetrahedron Lett. 2008, 49, 5652.
10. Yadav, L. D. S.; Awasthi, C.; Rai, V. K.; Rai, A. Tetrahedron Lett. 2007, 48, 8037.
11. Atherton, F. R.; Openshaw, H. T.; Todd, A. R. J. Chem. Soc. 1945, 660.
12. (a) Mielniczak, G.; Łopusin´ ski, A. J. Synth. Commun. 2003, 33, 3851. and
references cited therein; (b) Atherton, F. R.; Todd, A. R. J. Chem. Soc. 1947, 674.
13. (a) Zwierzak, A.; Osowska, K. Synthesis 1984, 223; (b) Zwierzak, A. Synthesis
1975, 507.
Scheme 4. Reaction of nitroarenes 1 with (EtO)3P 2a in toluene under microwave
conditions.
Table 5
Synthesis of diethyl N-arylphosphoramidates 3a–o in a single step reaction of 1a–o
with 2a under microwave conditions
14. (a) Appel, R.; Einig, H. Z. Anorg. Allg. Chem. 1975, 414, 241; (b) Appel, R. Angew.
Chem., Int. Ed. 1977, 14, 801.
15. Meyer, R. B.; Shuman, D. A.; Robins, R. K. Tetrahedron Lett. 1973, 269.
16. (a) Jäger, A.; Levy, M. J.; Hecht, S. M. Biochemistry 1988, 27, 7237; (b) Nemer, M.
J.; Ogilvie, K. K. Tetrahedron Lett. 1980, 21, 4149.
17. Cadogan, J. I. G.; Marshall, R.; Smith, D. M.; Todd, M. J. J. Chem. Soc. (C) 1970,
2441.
18. Cadogan, J. I. G.; Sears, D. J.; Smith, D. M.; Todd, M. J. J. Chem. Soc. (C) 1969,
2813.
Entry
1
R1
R2
R3
R4
R5 Time
(min)
3
Yield 3a (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
H
Me
H
H
Me
H
Me
H
H
Br
I
H
H
H
Me
H
H
Me
H
H
H
H
H
H
H
Me
H
H
H
H
H
Me
Me
H
H
H
H
H
H
H
OMe
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
15
15
15
15
15
15
15
15
10
10
10
10
10
10
10
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
78
68
73
66
75
79
77
71
52
68
56
62
63
73
57
H
19. Sundberg, R. J. J. Org. Chem. 1965, 30, 3604.
20. Sundberg, R. J. J. Am. Chem. Soc. 1966, 88, 3781.
21. Fischer, B.; Sheihet, L. J. Org. Chem. 1998, 63, 393.
Me
OMe
Cl
H
H
CO2Me
CN
H
22. General procedure for the synthesis of diethyl N-arylphosphoramidates
3
under microwave conditions: A mixture of 1 (1 mmol), triethyl phosphite (2a)
(6 mmol) and toluene (3 mL) was sealed in a 10 mL septum reaction vial and
irradiated with microwaves (DiscoverTM by CEM, 2450 MHz, 300 W, 200 °C).
After removal of triethyl phosphite (2a) and triethyl phosphate (6a) at reduced
pressure (10À1 mbar) and temperatures between 40 and 70 °C the residue was
diluted with CH2Cl2 (30 mL), and washed with water (2 Â 50 mL) and brine
(3 Â 20 mL). After drying over anhydrous MgSO4 and concentration in vacuo
the resulting residue was purified by flash chromatography over silica gel.
H
H
H
H
H
Br
Cl
Me Cl
a
Isolated yields.