6918
C. I. Stathakis et al. / Tetrahedron Letters 50 (2009) 6916–6918
2009, 396–402; (k) Mac, D. H.; Samineni, R.; Petrignet, J.; Srihari, P.;
3.94 (dd, J = 10.8, 3.2 Hz, 1H), 4.07 (t, J = 6.8 Hz, 1H), 4.33 (d, J = 12.0 Hz,
1H), 4.36 (d, J = 12.0 Hz, 1H), 4.42 (d, J = 12.0 Hz, 1H), 4.44 (d, J = 12.0 Hz,
1H), 4.48 (d, J = 12.0 Hz, 1H), 4.73 (d, J = 12.0 Hz, 1H), 7.25–7.40 (m, 15H);
Chandrasekhar, S.; Yadav, J. S.; Grée, R. Chem. Commun. 2009, 4117–4119.
6. (a) Gallos, J. K.; Goga, E. G.; Koumbis, A. E. J. Chem. Soc., Perkin Trans. 1 1994,
613–614; (b) Gallos, J. K.; Damianou, K. C.; Dellios, C. C. Tetrahedron Lett. 2001,
42, 5769–5771; (c) Gallos, J. K.; Stathakis, C. I.; Kotoulas, S. S.; Koumbis, A. E. J.
Org. Chem. 2005, 70, 6884–6890; (d) Stathakis, C. I.; Gallos, J. K. Tetrahedron Lett.
2008, 49, 6804–6806.
7. (a) Borén, H. B.; Eklind, K.; Garegg, P. J.; Lindberg, B.; Pilotti, Å. Acta Chem. Scand.
1972, 4143–4146; (b) Jaramillo, C.; Chiara, J.-L.; Martin-Lomas, M. J. Org. Chem.
1994, 59, 3135–3141.
8. (a) Aurrecoechea, J. M.; López, B.; Arrate, M. J. Org. Chem. 2000, 65, 6493–6501;
(b) Aurrecoechea, J. M.; Arrate, M.; Gil, J. H.; López, B. Tetrahedron 2003, 59,
5515–5522.
9. (a) Shing, T. K. M.; Elsley, D. A.; Gillhouley, J. G. J. Chem. Soc., Chem. Commun.
1989, 1280–1282; (b) Peet, N. P.; Huber, E. W.; Farr, R. A. Tetrahedron 1991, 47,
7537–7550; (c) Koumbis, A. E.; Gallos, J. K. Curr. Org. Chem. 2003, 7, 585–628;
(d) Bashiardes, G.; Cano, C.; Mausé, B. Synlett 2005, 1425–1428; (e) Shing, T. K.
M.; Cheng, H. M.; Wong, W. F.; Kwong, C. S. K.; Li, J.; Lau, C. B. S.; Leung, P. S.;
Cheng, C. H. K. Org. Lett. 2008, 10, 3145–3148; (f) Shing, T. K. M.; Wong, W. F.;
Ikeno, T.; Yamada, T. Chem. Eur. J. 2009, 15, 2693–2707.
10. The proton signal assignment of diastereoisomers 9 and 10 was made by H,H-
COSY experiments. Significant NOE enhancements were observed between the
two bridged protons (3a-H and 7a-H) as well as between 3a-H and 4-H in
compound 9, whereas no considerable enhancement was shown between 7-H
and 7a-H. On the other hand, in compound 10, an NOE enhancement was
observed between 7-H and 3a-H, but no significant enhancements between the
two bridged protons (3a-H and 7a-H) as well as between the couples 3a-H, 4-H
and 7-H, 7a-H were evident.
13C NMR (CDCl3, 75 MHz)
d 47.5, 49.4, 67.7, 68.2, 69.5, 71.9, 73.2, 73.7,
74.8, 79.6, 80.4, 127.7, 127.9, 128.1, 128.4, 128.6, 137.7, 138.0, 138.1;
HRMS m/z 476.2438 [C29H34NO5 (M+H)+ requires 476.2431]. Compound 12:
oil,
[a
]
D
;
ꢁ12.7 (c 1.5, CHCl3); IR (neat film) 3325 cmꢁ1 1H NMR (C6D6,
400 MHz, some peaks are broad due to conformer interconversion) d 0.11
(s, 3H), 0.12 (s, 3H), 1.01 (s, 9H), 2.17 (s, 3H), 2.34 (br m, 1H, 6-H), 3.07
(br m, 1H), 3.95 (dd, J = 10.4, 3.2 Hz, 1H), 4.04 (m, 4H), 4.23 (br, 1H), 4.49
(d, J = 12.0 Hz, 1H), 4.60 (d, J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.64
(d, J = 12.0 Hz, 1H), 4.75 (d, J = 12.0 Hz, 1H), 4.81 (d, J = 12.0 Hz, 1H), 7.05–
7.40 (m, 15H); 13C NMR (CDCl3, 100 MHz) d ꢁ5.4, 18.2, 25.9, 34.7, 39.9,
58.7, 61.3, 69.6, 72.5, 72.9, 73.3, 75.9, 76.4, 80.2, 127.4, 127.5, 127.8,
128.3, 138.7, 138.8, 139.1; HRMS m/z 592.3469 [C35H50NO5Si (M+H)+
requires 592.3453]. Compound 13: oil, [
a
]
D
ꢁ91.1 (c 1.2, CHCl3); IR (neat
film) 1680 cmꢁ1 1H NMR (CDCl3, 400 MHz)
;
d 0.08 (s, 3H), 0.09 (s, 3H),
0.93 (s, 9H), 3.96 (dd, J = 8.0, 3.2 Hz, 1H), 4.36 (m, 3H), 4.44 (br s, 1H),
4.69 (d, J = 11.2 Hz, 1H), 4.72 (d, J = 12.0 Hz, 2H), 4.79 (d, J = 12.0 Hz, 1H),
4.81 (d, J = 12.0 Hz, 1H), 4.91 (d, J = 11.2 Hz, 1H), 6.88 (d, J = 4.8 Hz, 1H),
7.25–7.40 (m, 15H); 13C NMR (CDCl3, 100 MHz) d ꢁ5.5, ꢁ5.45, 18.3, 25.9,
59.5, 72.2, 72.5, 73.2, 74.0, 78.8, 80.3, 127.7 (two peaks), 127.8, 128.0,
128.3 (two peaks), 128.4, 137.8, 138.1, 138.2, 138.6, 138.9, 196.4; HRMS
m/z 559.2882 [C34H43O5Si (M+H)+ requires 559.2874]. Compound 16: oil; IR
(neat film) 3325 cmꢁ1 1H NMR (CDCl3, 300 MHz) d 0.11 (s, 3H), 0.12 (s,
;
3H), 0.90 (s, 9H), 2.05 (m, 1H), 2.60 (s, 3H), 3.13 (t, J = 10.8 Hz, 1H), 3.76
(m, 3H), 3.87 (dd, J = 10.5, 7.5 Hz, 1H), 4.03 (d, J = 8.7 Hz, 1H), 4.12 (dd,
J = 10.8, 4.5 Hz, 1H), 4.27 (d, J = 11.1 Hz, 1H), 4.43 (d, J = 11.1 Hz, 1H), 4.44
(d, J = 12.0 Hz, 2H), 4.58 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 7.20–
7.40 (m, 15H); 13C NMR (CDCl3, 100 MHz) d ꢁ5.8, ꢁ5.7, 18.1, 25.8, 33.9,
42.0, 60.1, 64.5, 67.6, 71.5, 71.9, 73.2, 73.9, 76.5, 77.8, 127.8, 128.0 (two
peaks), 128.1, 128.2, 128.4 (two peaks), 128.5, 128.8, 137.4, 137.7, 137.8;
HRMS m/z 592.3460 [C35H50NO5Si (M+H)+ requires 592.3453].
11. Selected data. Compound 9: oil,
[
a
]
D
ꢁ54.2 (c 1.0, CHCl3); IR (neat film)
3500 (br) cmꢁ1 1H NMR (CDCl3, 400 MHz)
;
d 2.66 (s, 3H, Me), 2.70 (m,
1H, 6-H), 3.15 (m, 2H, 1-H), 3.79 (dd, J = 5.2, 4.0 Hz, 1H), 3.85 (dd, J = 6.4,
2.8 Hz, 1H), 3.89 (dd, J = 5.2, 2.8 Hz, 1H), 4.06 (t, J = 8.0 Hz, 1H), 4.11 (dd,
J = 7.2, 6.4 Hz, 1H), 4,20 (br s, 1H), 4.48 (d, J = 12.0 Hz, 1H), 4.52 (d,
J = 12.0 Hz, 1H), 4.62 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.68 (d,
J = 12.0 Hz, 1H), 4.72 (d, J = 12.0 Hz, 1H), 7.25-7.40 (m, 15H); 13C NMR
(CDCl3, 75 MHz) d 44.6, 44.8, 66.8, 67.2, 68.3, 72.6, 73.2 (two peaks), 75.4,
76.1, 79.5, 127.6, 127.7 (two peaks), 127.8, 127.9, 128.3, 128.4, 128.5,
137.8, 138.5, 138.7; HRMS m/z 476.2440 [C29H34NO5 (M+H)+ requires
12. (a) Jiang, S.; Singh, G.; Wightman, R. H. Tetrahedron Lett. 1994, 35, 5505–5508;
(b) van Boggelen, M. P.; van Dommelen, B. F. G. H.; Singh, G. Tetrahedron Lett.
1995, 36, 1899–1902; (c) Jiang, S.; McCullough, K. J.; Mekki, B.; Singh, G.;
Wightman, R. H. J. Chem. Soc., Perkin Trans.
1 1997, 1805–1814; (d) van
Boggelen, M. P.; van Dommelen, B. F. G. A.; Jiang, S.; Singh, G. Tetrahedron 1997,
53, 16897–16910.
476.2431]. Compound 10: oil, [
(br) cmꢁ1 1H NMR (CDCl3, 400 MHz) d 2.10 (br s, 1H), 2.69 (m, 1H), 2.83
(t, J = 10.8 Hz, 1H), 2.85 (s, 3H), 3.69 (t, J = 3.2 Hz, 1H), 3.83 (m, 3H, 2-H),
a
]
D
ꢁ48.7 (c 0.9, CHCl3); IR (neat film) 3500
;
13. For ent-gabosine E 14, ½a D20
ꢂ
ꢁ145.7 (c 0.35, MeOH) [for gabosine E lit.1a
[a]
D
+148 (c 0.85, MeOH) and +152 (c 1.0, H2O)].