Soc., 2002, 124, 8542; (b) Y. Ding, Q. Ma, H. W. Roesky,
R. Herbst-Irmer, I. Uso
Organometallics, 2002, 21, 5216; (c) Y. Ding, Q. Ma,
H. W. Roesky, I. Uson, M. Noltemeyer and H.-G. Schmidt,
´
n, M. Noltemeyer and H.-G. Schmidt,
´
J. Chem. Soc., Dalton Trans., 2003, 1094; (d) L. W. Pineda,
V. Jancik, H. W. Roesky and R. Herbst-Irmer, Angew. Chem.,
Int. Ed., 2004, 43, 5534.
´
4 M. Massol, D. Mesnard, J. Barrau and J. Satge, C. R. Acad. Sci.
Ser. IIc: Chim., 1971, 272, 2081.
5 (a) E. Bonnefille, S. Mazieres, C. Bibal, N. Saffon, H. Gornitzka
and C. Couret, Eur. J. Inorg. Chem., 2008, 4242; (b) D. Ellis,
P. B. Hitchcock and M. F. Lappert, J. Chem. Soc., Dalton Trans.,
1992, 3397; (c) N. Tokitoh, K. Kishikawa, R. Okazaki,
T. Sasamori, N. Nakata and N. Takeda, Polyhedron, 2002, 21,
563; (d) P. Jutzi, H. Schmidt, B. Neumann and H.-G. Stammler,
Organometallics, 1996, 15, 741; (e) M. Veith and A. Rammo,
Z. Anorg. Allg. Chem., 1997, 623, 861; (f) L. Pu, N. J. Hardman
and P. P. Power, Organometallics, 2001, 20, 5105; (g) N. Tokitoh,
T. Matsumoto and R. Okazaki, Chem. Lett., 1995, 1087;
(h) G. L. Wegner, R. T. F. Berger, A. Schier and H. Schmidbaur,
Organometallics, 2001, 20, 418 and cited references therein.
Scheme 3 Resonance structures 3, 30 and 300 (Ar = 2,6-iPr2C6H3,
R = Me, iPr).
characterised by Seifullina and co-workers,15b suggesting
significant GeQO double bond character in the compounds.
Interestingly, although the coordination number on the
germanium centre in 3a and 3b increases from three in 2a
and 2b to four, the Ge–N distances, ranging from 1.852(2) to
1.871(2) A, are shorter than those found in 2a and 2b (1.912(2)
to 1.943(2) A). The same is true for the Ge–C(carbene)
distances (2.020(4) A for 3a, 2.040(2) and 2.053(3) A for 3b),
which are shorter than those of the corresponding values in 2a
(2.149(3) A) and 2b (2.192(3) A). Apparently, the shortening
of the Ge–N and Ge–C distances in 3a and 3b is indicative of
the importance of betaine-like resonance forms 30 and 300 for
the stabilisation of the GeQO double bond (Scheme 3).
Furthermore, due to the coordination of the NHC to the
germanium atom in 3a and 3b, the hypothetical N2GeQO
moieties lose planarity, affording a strongly distorted tetra-
hedral coordination geometry around germanium. Notably, a
similar situation has been observed for intramolecular donor-
stabilised germanethiones3 and silanones, respectively.6,8,9
In conclusion, we have reported the facile synthesis of the
novel NHC–germylene adducts 2a and 2b with highly nucleo-
philic GeII atoms. The latter adducts react readily with N2O at
ambient temperature to give the isolable germanone–NHC
complexes 3a and 3b.
6 S. Yao, M. Brym, C. van Wullen and M. Driess, Angew. Chem.,
¨
Int. Ed., 2007, 46, 4159.
7 (a) M. Driess, S. Yao, M. Brym, C. van Wullen and D. Lentz,
¨
J. Am. Chem. Soc., 2006, 128, 9628; (b) M. Driess, S. Yao,
M. Brym and C. van Wullen, Angew. Chem., Int. Ed., 2006, 45,
6730.
¨
8 S. Yao, Y. Xiong, M. Brym and M. Driess, J. Am. Chem. Soc.,
2007, 129, 7268.
9 Y. Xiong, S. Yao and M. Driess, J. Am. Chem. Soc., 2009, 131,
7562.
10 For examples, see: (a) Y. Wang, Y. Xie, Y. Wei, R. B. King,
H. F. Schaefer III, P. von R. Schleyer and G. H. Robinson,
Science, 2008, 321, 1069; (b) P. A. Rupar, V. N. Staroverov,
P. J. Ragogna and K. M. Baines, J. Am. Chem. Soc., 2007, 129,
15138; (c) P. A. Rupar, M. C. Jennings, P. J. Ragogna and
K. M. Baines, Organometallics, 2007, 26, 4109; (d) P. A. Rupar,
V. N. Staroverov, P. J. Ragogna and K. M. Baines, J. Am. Chem.
Soc., 2007, 129, 15138.
11 M. Driess, S. Yao, M. Brym and C. van Wullen, Angew. Chem.,
Int. Ed., 2006, 45, 4349.
12 N. Kuhn and T. Kratz, Synthesis, 1993, 561.
¨
13 Crystal data for 2a: C36H52GeN4, M = 613.41, monoclinic, space
group P21/n, Z = 4, a = 12.5971(6), b = 16.7102(6), c =
17.2809(6) A, b = 105.778(4)1. V = 3500.6(2) A3, T = 150 K,
15 170 reflections collected, 6140 independent (Rint = 0.0656)
which were used in all calculations. The final wR(F2) was 0.0871
(all data). Crystal data for 2b: C47H68GeN4, M = 761.64, triclinic,
Financial support from the Cluster of Excellence ‘‘Unifying
Concepts in Catalysis’’ (EXC 314/1) funded by the Deutsche
Forschungsgemeinschaft and administered by the Technische
ꢀ
space group P1, Z = 2, a = 11.1525(4), b = 14.2463(5), c =
Universitat Berlin is gratefully acknowledged. NHC =
¨
N-heterocyclic carbenes.
14.3356(6) A, a = 74.43&(3)1, b = 80.643(3)1, g = 87.108(3)1.
V = 2164.9(2) A3, T = 150 K, 16 315 reflections collected, 7585
independent (Rint = 0.0464) which were used in all calculations.
The final wR(F2) was 0.0760 (all data). Crystal data for 3a:
C41H64Cl2GeN4O2, M = 788.45, monoclinic, space group P21/c,
Z = 4, a = 11.6635(3), b = 24.5936(7), c = 15.6283(3) A, b =
102.959(2)1. V = 4368.8(2) A3, T = 150 K, 18 717 reflections
collected, 7646 independent (Rint = 0.0321) which were used in all
calculations. The final wR(F2) was 0.1693 (all data). Crystal data
for 3b: C40H60GeN4O, M = 685.51, monoclinic, space group
P21/c, Z = 8, a = 21.2684(5), b = 16.9410(4), c = 21.6339(5) A,
b = 94.333(2)1. V = 7772.6(3) A3, T = 150 K, 71 416 reflections
collected, 13 672 independent (Rint = 0.0693) which were used in
all calculations. The final wR(F2) was 0.0757 (all data). Crystals of
2a, 2b, 3a, and 3b were covered with a perfluorinated oil prior to
mounting on the goniometer in a cold N2 flow and measured on an
Oxford Diffraction Xcalibur S Sapphire at 150 K (Mo-Ka radiation,
l = 0.71073 A).
Notes and references
1 For selected reviews on congeners of ketones, see: (a) N. Tokitoh,
H. Suzuki, T. Matsumoto, Y. Matsuhashi, R. Okazaki and
M. Goto, J. Am. Chem. Soc., 1991, 113, 7047; (b) N. Tokitoh
and R. Okazaki, in The Chemistry of Organosilicon Compounds,
ed. Z. Rappoport, Y. Apeloig, Wiley, New York, 1998, vol. 2,
ch. 17, pp. 1063–1103; (c) J. Barrau and G. Rima, Coord. Chem. Rev.,
1998, 178–180, 593; (d) P. P. Power, Chem. Rev., 1999, 99, 3463;
(e) R. Okazaki and N. Tokitoh, Acc. Chem. Res., 2000, 33, 625;
(f) N. Tokitoh and R. Okazaki, Adv. Organomet. Chem., 2001, 47,
121; (g) N. Takeda, N. Tokitoh and R. Okazaki, Handbook of
Chalcogen Chemistry, ed. F. A. Devillanova, The Royal Society of
Chemistry, Cambridge, 2007, ch. 3, pp. 195–222.
2 P. Arya, J. Boyer, F. Carre0, R. Corriu, G. Lanneau, J. Lapasset,
M. Perrot and C. Priou, Angew. Chem., Int. Ed. Engl., 1989, 28, 1016.
3 For selected recent examples of stable germanium–chalcogen
´
doubly bonded compounds, see: (a) Y. Ding, Q. Ma, I. Uson,
H. W. Roesky, M. Noltemeyer and H.-G. Schmidt, J. Am. Chem.
14 P. Jutzi, S. Keitemeyer, B. Neumann and H.-G. Stammler,
Organometallics, 1999, 18, 4778.
15 (a) K. M. Baines and W. G. Stibbs, Coord. Chem. Rev., 1995, 145,
157; (b) I. I. Seifullina, T. P. Batalova, E. V. Kolchinskii and
V. K. Bel’skii, Koord. Khim., 1990, 16, 773.
ꢁc
This journal is The Royal Society of Chemistry 2009
6468 | Chem. Commun., 2009, 6466–6468