Radical Addition of Ethers to Terminal Alkynes
actions, VCH, Weinheim, Germany, 1995; b) N. A. Porter, B.
Giese, D. P. Curran, Acc. Chem. Res. 1991, 24, 296; c) P. Re-
naud, M. Gerster, Angew. Chem. Int. Ed. 1998, 37, 2562; d)
T. V. RajanBabu, Acc. Chem. Res. 1991, 24, 139; e) W. Smadja,
Synlett 1994, 1; f) M. P. Sibi, S. Manyem, J. Zimmerman,
Chem. Rev. 2003, 103, 3263; g) M. P. Sibi, N. A. Porter, Acc.
Chem. Res. 1999, 32, 163; h) M. P. Sibi, S. Manyem, Tetrahe-
dron 2000, 56, 8033.
a) For Lewis acids in radical reactions, see: P. Renaud, M.
Gerster, Angew. Chem. Int. Ed. 1998, 37, 2562; b) Lewis-acidic
properties of dialkylzinc: S. Bazin, L. Feray, M. P. Bertrand,
Chimia 2006, 60, 260.
Reports on intermolecular radical hydrogen abstraction from
sp3-hybrized C atoms by vinyl radicals are very scarce. For a
few examples of intramolecular hydrogen abstraction see: a)
R. C. Neuman, G. D. Holmes, J. Org. Chem 1966, 33, 4317; b)
P. G. Webb, J. A. Kampmeier, J. Am. Chem. Soc. 1971, 93,
3730; c) R. M. Kopchk, J. A. Kampmeier, J. Am. Chem. Soc.
1968, 90, 6733; d) E. I. Heiba, R. M. Dessau, J. Am. Chem.
Soc. 1967, 89, 3772; e) R. M. Wilson, T. J. Commons, J. Org.
Chem. 1975, 40, 2891.
a) J. K. Crandall, W. J. Michaely, J. Org. Chem. 1984, 49, 4244;
b) P. K. Mandal, G. Maiti, S. C. Roy, J. Org. Chem. 1998, 63,
2829; c) J. Tang, H. Shinokubo, K. Oshima, Tetrahedron 1999,
55, 1893; d) M. Okabe, M. Abe, M. Tada, J. Org. Chem. 1982,
47, 1775; e) R. Yanada, Y. Koh, N. Nishimori, A. Matsumura,
S. Obika, H. Mitsuya, N. Fujii, Y. Takemoto, J. Org. Chem.
2004, 69, 2417; f) A. Blum, W. Hess, A. Studer, Synthesis 2004,
2226; g) B. C. Ranu, T. Mandal, Tetrahedron Lett. 2006, 47,
2859.
α-Alkoxyl radicals are nucleophilic reactants; a) B. Giese, An-
gew. Chem. Int. Ed. Engl. 1983, 22, 753; b) B. Giese, Angew.
Chem. Int. Ed. Engl. 1985, 24, 553.
Prolonged reaction time resulted in low yields of products, so
small amounts of O2 was added to the system in order to accel-
erate the reaction.
Although intermediate B can be stabilized by the electron-with-
drawing groups, the effect of different substitution on E/Z
selectivity is still unclear.
This might be owing to the formation the zinc alkynilide
through the zinc-proton exchange between (p-nitrophenyl)
acetylene and Me2Zn.
Position 2 in 1,3-dioxane is much more reactive than position
4: a) V. Malatesta, K. U. Ingold, J. Am. Chem. Soc. 1981, 103,
609; b) A. L. J. Beckwith, C. J. Easton, J. Am. Chem. Soc. 1981,
103, 615.
Intermediate C can be decomposed by oxygen gas. Keeping the
reaction mixture in the dry air for 30 min, most of the formed
product was decomposed.
Alkyne 1 can not be consumed to the completion, might be-
cause of the zinc-proton exchange of alkyne 1 with intermedi-
ate C, or with Me2Zn; a) T. M. Bertrand, G. Courtois, L. Mig-
niniac, Tetrahedron Lett. 1974, 15, 3147; b) M. Nakamura, T.
Fujimoto, K. Endo, E. Nakamura, Org. Lett. 2004, 6, 4837.
Hydrogen abstraction by vinyl radical has been reported be-
fore, in which other hydrogen source such as alkylzinc perox-
ides has been proposed; see ref. [4].
Ring size effects on alkyl radical reactivity: P. J. Kropp, J. Am.
Chem. Soc. 1969, 91, 5783.
A small amount of E/Z-3b were also detected in the reaction
mixture. See Supporting Information.
For reviews on Negishi coupling: a) E.-I. Negishi, J. Or-
ganomet. Chem. 2002, 34, 653; b) E.-I. Negishi, Acc. Chem.
Res. 1982, 15, 340.
dried with sodium sulfate. After removal of the solvent, purification
of the resulting crude material by column chromatography (petro-
leum ether/ethyl acetate = 80:1) afforded the desired product E-3b
(22 mg, 53%).
Supporting Information (see also the footnote on the first page of
this article): All reaction procedures and spectroscopic data for the
products.
[7]
[8]
Acknowledgments
Support of this work by grants from the National Sciences Founda-
tion of China (20502033 and 20872176) is gratefully acknowledged.
[1] For reviews, see: a) C. L. Hill, Activation and Functionalization
of Alkanes, Academic Press, New York, 1989; b) A. E. Shilov,
G. B. Shul’pin, Chem. Rev. 1997, 97, 2879; c) G. Dyker, Angew.
Chem. Int. Ed. 1999, 38, 1699; d) F. Jossey, D. Kefirt, J. Sorba,
Free Radicals in Organic Chemistry, John Wiley & Sons, Mas-
son, 1995, pp. 211–220.
[9]
[2] The α-alkoxyalkyl radicals were initiated with Me2Zn, or Et3B.
For Me2Zn see: a) K. Yamada, H. Fujihara, Y. Yamamoto, Y.
Miwa, T. Taga, K. Tomioka, Org. Lett. 2002, 4, 3509; b) K.
Yamada, Y. Yamamoto, K. Tomioka, Org. Lett. 2003, 5, 1797;
c) K. Yamada, Y. Yamamoto, M. Maekawa, K. Tomioka, J.
Org. Chem. 2004, 64, 1531; d) Y. Yamamoto, K. Yamada, K.
Tomioka, Tetrahedron Lett. 2004, 45, 795; e) Y. Yamamoto, M.
Maekawa, T. Akindele, K. Yamada, K. Tomioka, Tetrahedron
2005, 61, 379; f) T. Akindele, Y. Yamamoto, M. Maekawa, H.
Umeki, K. Yamada, K. Tomioka, Org. Lett. 2006, 8, 5729; g)
K. Yamada, H. Umeki, M. Maekawa, Y. Yamamoto, T. Akind-
ele, M. Nakano, K. Tomioka, Tetrahedron 2008, 64, 7258; h)
Review: K. Yamada, Y. Yamamoto, K. J. Tomioka, Synth. Org.
Chem. Jpn. 2004, 62, 1158; i) T. Akindele, K.-I. Yamada, K.
Tomioka, Acc. Chem. Res. 2009, 42, 345. For Et3B see: j) T.
Yoshimitsu, Y. Arano, H. Nagaoka, J. Org. Chem. 2005, 70,
2342; k) T. Yoshimitsu, M. Tsunoda, H. Nagaoka, Chem. Com-
mun. 1999, 1745.
[3] For some examples of generating the α-alkoxyalkyl radicals by
other methods, see: a) J. Gong, P. L. Fuchs, J. Am. Chem. Soc.
1996, 118, 4486; b) J. Xiang, P. L. Fuchs, J. Am. Chem. Soc.
1996, 118, 11986; c) J. Xiang, W. Jiang, J. Gong, P. L. Fuchs,
J. Am. Chem. Soc. 1997, 119, 4123; d) K. Hirao, S. Sakaguchi,
Y. Ishii, Tetrahedron Lett. 2002, 43, 3617; e) S. Kim, N. Kim,
W.-J. Chung, C. H. Cho, Synlett 2001, 937; f) M. Fernandez,
R. Alonso, Org. Lett. 2003, 5, 2461; g) S. Torrente, R. Alonso,
Org. Lett. 2001, 3, 1985; h) R. L. Jacobs, G. G. Ecke, J. Org.
Chem. 1963, 28, 3036; i) R. Mosca, M. Fagnoni, M. Mella, A.
Albini, Tetrahedron 2001, 57, 10319; j) J. Chen, R. L. Kirch-
meier, J. M. Shreeve, Inorg. Chem. 1996, 35, 6676; k) A. Clerici,
R. Cannella, N. Pastori, W. Panzeri, O. Porta, Tetrahedron
2006, 62, 5986; Z.-Q. Liu, L. Sun, J.-G. Wang, J. Han, Y.-K.
Zhao, B. Zhou, Org. Lett. 2009, 11, 1437.
[4] For a recent report on dialkylzinc-mediated radical reactions,
see: a) A. Pérez-Luna, C. Botuha, F. Ferreira, F. Chemla,
Chem. Eur. J. 2008, 14, 8784; b) L. Feray, M. P. Bertrand, Eur.
J. Org. Chem. 2008, 3164.
[5] 2-Vinyl-substituted ethers have been the goal of numerous syn-
thetic efforts, see: a) T. Kawashima, M. Nakamura, N. Inam-
oto, Phosphorus Sulfur Silicon Relat. Elem. 1992, 69, 293; b) T.
Kawashima, M. Nakamura, N. Inamoto, Heterocycles 1997,
44, 487; c) I. Kadota, L. M. Lutete, A. Shibuya, Y. Yamamoto,
Tetrahedron Lett. 2001, 42, 6207; d) A. J. Clark, S. Rooke, T. J.
Sparey, P. C. Taylor, Tetrahedron Lett. 1996, 37, 909; e) Y.-J.
Jang, Y.-K. Shih, J.-Y. Liu, W.-Y. Kuo, C.-F. Yao, Chem. Eur.
J. 2003, 9, 2123; f) Y.-h. Zhang, C.-J. Li, Tetrahedron Lett.
2004, 45, 7581.
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
This reaction can not be quenched by D2O.
It was found that [D8]THF radical can not be generated di-
rectly by ethyl radical. However, this can be obtained by ad-
dition of a small amount of THF to the solvent [D8]THF.
Me2Zn/O2 system was also tested, but no Z-isomer was ob-
tained; see Supporting Information.
[23]
[6] For reviews on stereocontrol in radical reaction, see: a) D. P.
Curran, N. A. Porter, B. Giese, Stereochemistry of Radical Re-
Eur. J. Org. Chem. 2009, 5146–5152
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5151