6900
M. Shao, Y. Zhao / Tetrahedron Letters 50 (2009) 6897–6900
scan experiments. In fact, the voltammograms were virtually un-
changed after more than 10 cycles of scans. The inability of 2
and 3 to undergo electropolymerization can be rationalized as fol-
References and notes
1. Handbook of Oligo- and Polythiophenes; Fichou, D., Ed.; Wiley-VCH: Weinheim,
1999.
2. Roncali, J. Chem. Rev. 1992, 92, 711–738.
3. Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141–1276.
4. TTF Chemistry: Fundamentals and Applications of Tetrathiafulvalene; Yamada, J.,
Sugimoto, T., Eds.; Springer: Berlin, 2004.
lows: the exTTF units play
a dominating role in oxidation
processes, such that the thienyl moieties are not able to form suit-
able radical cations for electropolymerization.26
To investigate the electronic properties of compounds 2 and 3 in
neutral and oxidized forms, oxidative UV–vis titration and spectro-
electrochemistry measurements were conducted on their CHCl3
solutions (see Fig. 2). In Figure 2A, compound 2 shows three UV–
vis absorption bands at 453, 390, and 317 nm in neutral state.
Upon titration with an oxidant, PhI(OAc)2/CF3SO3H (note that
1 M equiv of the oxidant theoretically consumes two moles of elec-
trons),27,29 up to 3.0 M equiv, the absorption peak at 453 nm is ob-
served to steadily decrease in intensity, while the other two peaks
show rather insignificant change. An isosbestic point can be clearly
seen at 419 nm. Similar UV–vis spectroscopic changes can be ob-
served in Figure 2C, wherein compound 2 is subjected to con-
5. Segura, J. L.; Martín, N. Angew. Chem., Int. Ed. 2001, 40, 1372–1409.
6. Bryce, M. R. J. Mater. Chem. 2000, 10, 589–598.
7. Mas-Torrent, M.; Durkut, M.; Hadley, P.; Ribas, X.; Rovira, C. J. Am. Chem. Soc.
2004, 126, 984–985.
8. Roncali, J. J. Mater. Chem. 1997, 7, 2307–2321.
9. Nunes, J. P. M.; Figueira, M. J.; Belo, D.; Santos, I. C.; Ribeiro, B.; Lopes, E. B.;
Henriques, R. T.; Vidal-Gancedo, J.; Veciana, J.; Rovira, C.; Almeida, M. Chem.
Eur. J. 2007, 13, 9841–9849.
10. Roulsen, T.; Nielsen, K. A.; Bond, A. D.; Jeppesen, J. O. Org. Lett. 2007, 9, 5485–
5488.
11. Trippé, G.; Canevet, D.; Le Derf, F.; Frère, P.; Sallé, M. Tetrahedron Lett. 2008, 49,
5452–5454.
12. Roncali, J.; Giffard, M.; Frère, P.; Jubault, M.; Gorgues, A. J. Chem. Soc., Chem.
Commun. 1993, 689–691.
13. Engler, E. M.; Patel, V. V.; Andersen, J. R.; Schumaker, R. R.; Fukushima, A. A. J.
Am. Chem. Soc. 1978, 100, 3769–3776.
trolled-potential oxidation in
a 1 mm quartz cuvette. These
14. Kanibolotsky, A. L.; Kanibolotskaya, L.; Gordeyev, S.; Skabara, P. J.; McCulloch,
I.; Berridge, R.; Lohr, J. E.; Marchioni, F.; Wudl, F. Org. Lett. 2007, 9, 1601–1604.
15. Lee, H.-J.; Han, S.-W.; Mizuno, M.; Noh, D.-Y. Synth. Met. 2001, 120, 893–894.
16. Alévêque, O.; Frère, P.; Leriche, P.; Breton, T.; Cravino, A.; Roncali, J. J. Mater.
Chem. 2009, 19, 3648–3651.
17. Leriche, P.; Raimundo, J.-M.; Turbiez, M.; Monroche, V.; Allain, M.; Sauvage, F.-
X.; Roncali, J.; Frère, P.; Skabara, P. J. J. Mater. Chem. 2003, 13, 1324–1332.
18. Otero, M.; Herranz, M. Á.; Seoane, C.; Martín, N.; Garín, J.; Orduna, J.; Alcalá, R.;
Villacampa, B. Tetrahedron 2002, 58, 7463–7475.
19. Favard, J.-F.; Frère, P.; Riou, A.; Benahmed-Gasmi, A.; Gorgues, A.; Jubault, M.;
Roncali, J. J. Mater. Chem. 1998, 8, 363–366.
20. Ohta, A.; Kobayashi, T.; Kato, H. J. Chem. Soc., Perkin Trans. 1 1993, 905–911.
21. Huchet, L.; Akoudad, S.; Levillain, E.; Roncali, J.; Emge, A.; Bäuerle, P. J. Phys.
Chem. B 1998, 102, 7776–7781.
results indicate that a two-species equilibrium, presumably be-
tween 2 and [2]2+, is formed during the oxidation.
Compound 3 shows absorption bands at 475, 357, and 301 nm
in its UV–vis profile (see Fig. 2B). Upon addition of oxidant up to
2.0 M equiv, the peak at 475 nm decreases considerably. In the
meantime, an absorption tail from ca. 550 to 750 nm increases
appreciably, the origin of which is assigned to [3]2+. There are
two isosbestic points at 538 and 441 nm observed during the titra-
tion of oxidant from 0 to 1.0 M equiv, and these two isosbestic
points drift slightly when the amount of oxidant is further in-
creased. More significant drift of isosbestic points can be seen in
the spectroelectrochemical measurements when the applied volt-
age is greater than 1.0 V (Fig. 2D). The drift of isosbestic points is
also accompanied by decreasing absorption tail from 550 to
750 nm, which substantiates the EC mechanism elicited from vol-
tammetric analysis.
22. Skabara, P. J.; Müllen, K.; Bryce, M. R.; Howard, J. A. K.; Batsanov, A. S. J. Mater.
Chem. 1998, 8, 1719–1724.
23. Charlton, A.; Kalaji, M.; Murphy, P. J.; Salmaso, S.; Underhill, A. E.; Williams, G.;
Hursthouse, M. B.; Malik, K. M. A. Synth. Met. 1998, 95, 75–78.
24. Charlton, A.; Underhill, A. E.; Williams, G.; Kalaji, M.; Murphy, P. J.; Malik, K. M.
A.; Hursthouse, M. B. J. Org. Chem. 1997, 62, 3098–3102.
25. Thobie-Gautier, C.; Gorgues, A.; Jubault, M.; Roncali, J. Macromolecules 1993, 26,
4094–4099.
In summary, we have successfully developed synthetic routes to
two thiophene–exTTF hybrid systems 2 and 3. Electrochemical and
electronic absorption properties were elucidated by voltammetric
techniques in combination with UV–vis spectroscopic analysis. Ef-
forts toward electropolymerization of 2 and 3 have not been suc-
cessful; however, this barrier is envisaged to be circumvented by
incorporation of oligothiophenes to the design motif26 or through
a Ni-catalyzed polymerization35 of the brominated products of 2
and 3 in our future work. In this vein, further investigations on thi-
ophene–exTTF triads 2 and 3 as well as their analogues are worth-
while and should lead to appealing new electronic materials.
26. Skabara, P. J.; Roberts, D. M.; Serebryakov, I. M.; Pozo-Gonzalo, C. Chem.
Commun. 2000, 1005–1006.
27. Bendikov, M.; Wudl, F.; Perepichka, D. F. Chem. Rev. 2004, 104, 4891–4946.
28. Shao, M.; Chen, G.; Zhao, Y. Synlett 2008, 371–376.
29. Chen, G.; Zhao, Y. Tetrahedron Lett. 2006, 47, 5069–5073.
30. Chen, G.; Shao, M.; Wang, L.; Zhao, Y. Asian Chem. Lett. 2007, 11, 185–196.
31. Zhao, C.; Zhang, Y.; Ng, M.-K. J. Org. Chem. 2007, 72, 6364–6371.
32. Zhao, C.; Chen, X.; Zhang, Y.; Ng, M.-K. J. Polym. Sci., Part A: Polym. Chem. 2008,
46, 2680–2688.
33. Characterization data for compound 2: IR (neat): 2921, 2851, 1638, 1617, 1558,
1530, 825, 668 cmÀ1
; d 7.77 (s, 2H), 7.55 (d,
1H NMR (500 MHz, CDCl3)
J = 7.99 Hz, 2H), 7.53 (d, J = 8.05 Hz, 2H), 7.21 (s, 2H), 6.90 (s, 2H), 2.64 (t,
J = 7.65 Hz, 4H), 2.41 (s, 6H), 2.40 (s, 6H), 1.66 (m, 4H), 1.40–1.25 (m, 20H), 0.89
(t, J = 6.76 Hz, 6H); 13C NMR (125 MHz, CDCl3) d 144.9, 143.9, 135.5, 133.7,
133.1, 132.0, 126.4, 126.3, 126.2, 125.2, 123.7, 123.6, 122.9, 120.2, 32.3, 31.1,
30.9, 29.9, 29.8, 29.7, 23.1, 19.6, 19.5, 14.6; HR-EIMS (+eV) m/z calcd for
C48H56S10 952.1589, found 952.1589 [M]+. Characterization data for compound
Acknowledgments
3: Mp 158–160 °C; IR (neat) 2941, 2878, 1560, 1507, 1474, 1337 cmÀ1 1H NMR
;
(500 MHz, CDCl3) d 7.71 (s, 2H), 6.84 (s, 2H), 3.08 (t, J = 7.73 Hz, 4H), 2.57 (s,
6H), 2.52 (s, 6H), 1.68 (m, 4H), 1.41 (m, 4H), 1.36–1.24 (m, 20H), 0.88 (t,
J = 6.85 Hz, 6H); 13C NMR (125 MHz, CDCl3) d 143.5, 140.5, 137.4, 137.3, 136.8,
132.1, 129.8, 128.1, 122.5, 121.0, 114.1, 33.0, 32.3, 32.0, 30.0, 29.84, 29.79, 23.1,
19.9, 19.7, 14.5; HR-CIMS (+eV) m/z calcd for C42H50S10 874.1120, found
875.1230 [M+H]+.
The authors thank NSERC, CFI, and Memorial University of New-
foundland for funding support.
34. Gruhn, N. E.; Macías-Ruvalcaba, N. A.; Evans, D. H. Langmuir 2006, 22, 10683–
10688.
Supplementary data
35. Skabara, P. J.; Berridge, R.; McInnes, E. J. L.; West, D. P.; Coles, S. J.; Hursthouse,
M. B.; Müllen, K. J. Mater. Chem. 2004, 14, 1964–1969.
Supplementary data associated with this article can be found, in