584 Journal of Medicinal Chemistry, 2010, Vol. 53, No. 2
Sandanayaka et al.
solutions were given by orogastric gavage to male Sprague-Daw-
ley rats in a dosing volume of 10 mL/kg (1% of body weight) using
stainless steel feeding needles of 0.9 mm ꢀ 38 mm (B & K
Universal AB, Sollentuna, Sweden) and 1 mL Omnifix syringes
(B. Braun, Melsungen, Germany). The rats were fasting in the
single dose time course experiments and nonfasting in all the other
experiments.
Isolation of Whole Blood from Dosed Animals. Rats were put
in a special cylinder to hold them still. The tail vein was
punctured with 25G ꢀ 5/8 in. needle and the blood collected
into a heparin tube. Dosing in dog and monkey was carried out
at CROs sites.
responses. Am. Rev. Respir. Crit. Care Dis. 1987, 136, 985–998. (c)
Drazen, J. M. Pharmacology of leukotriene receptor antagonists and
5-lipoxygenase inhibitors in the management of asthma. Pharma-
cotherapy 1997, 17, S22–S30. (d) Marx, J. L. The leukotrienes in
allergy and inflammation. Science 1982, 215, 1380–1383. (e) Griffiths,
R. J.; Pettipher, E. R.; Koch, K.; Farrell, C. A.; Breslow, R.; Conklyn, M.
J.; Smith, M. A.; Hackman, B. C.; Wimberly, D. J.; Milici, A. J.
Leukotriene B4 plays a critical role in the progression of collagen-
induced arthritis. Proc. Natl. Acad. Sci. U.S.A. 1995, 92 (2), 517–521.
(f) Shao, W. H.; Del, Prete, A.; Bock, C. B.; Haribabu, B. Targeted
disruption of leukotriene B4 receptors BLT1 and BLT2: a critical role
for BLT1 in collagen-induced arthritis in mice. J. Immunol. 2006, 176
(10), 6254–6261. (g) Tsuji, F.; Oki, K.; Fujisawa, K.; Okahara, A.;
Horiuchi, M.; Mita, S. Involvement of leukotriene B4 in arthritis
models. Life Sci. 1999, 64 (3), PL51–PL56. (h) Barnes, P. J. New
treatments for COPD. Nat. Rev. Drug Discovery 2002, 1 (6), 437–446.
(i) Gompertz, S.; Stockley, R. A. A randomized, placebo-controlled trial
of a leukotriene synthesis inhibitor in patients with COPD. Chest 2002,
122 (1), 289–294. (j) Lemiere, C.; Pelissier, S.; Tremblay, C.;
Chaboillez, S.; Thivierge, M.; Stankova, J.; Rola-Pleszczynski, R.
Leukotrienes and isocyanate-induced asthma: a pilot study. Clin.
Exp. Allergy 2004, 34 (11), 1684–1689. (k) Luster, A. D.; Tager, A.
M. T-cell trafficking in asthma: lipid mediators grease the way. Nat.
Rev. Immunol. 2004, 4 (9), 711–724. (l) Terawaki, K.; Yokomizo, T.;
Nagase, T.; Toda, A.; Taniguchi, M.; Hashizume, K..; et al. Absence
of leukotriene B4 receptor 1 confers resistance to airway hyperrespon-
siveness and Th2?type immune responses. J. Immunol. 2005,
175 (7), 4217–4225. (m) Montuschi, P.; Sala, A.; Dahlen, S. E.;
Folco, G. Pharmacological modulation of the leukotriene pathway in
allergic airway disease. Drug Discovery Today 2007, 12 (9-10), 404–
412.
Acknowledgment. We wish to acknowledge technical con-
tributions of Jenny Lin for providing guidance and overall
analytical support, Denise Anderson for running mass spec-
tral analyses, Dr. Nelson Zhao for acquiring NMR spectra,
and Brian Peasefor generating analyticalHPLC data. We also
thank Dr. Kari Stefansson for helpful discussions and en-
couragement during the course of this work.
Supporting Information Available: Elaboration of fragments,
hydrophilic linkers for which bound-structures are shown,
hydrolase-bound fragments containing hydrophilic linkers, plot
of BEI vs. SEI, preparation of recombinant human LTA4
hydrolase, protein crystallization, preparation of compound-
soaked crystals and crystal freezing, and data collection, struc-
ture solution, and refinement. This material is available free of
(8) (a) Brooks, D. W.; Summers, J. B.; Gunn, B. P.; Rodriques, K. E.;
Martin, J. G.; Martin, M. B.; Mazdiyasni, H.; Holms, J. H.;
Stewart, A. O.; Moore, J. L.; Young, P. R.; Albert, D. H.; Bouska,
J. B.; Malo, P. E.; Dyer, R. D.; Bell, R. L.; Rubin, P.; Kesterson, J.;
Carter, G. W. The discovery of A-64077, a clinical candidate for
treating diseases involving leukotriene mediators. In Abstracts of
the International Chemical Congress of Pacific Basin Societies;
Honolulu, HI, 1989; BIOS 34 . (b) Sirois, P.; Borgeat, P.; Lauziere,
M.; Dube, L.; Rubin, P. R.; Kesterson, J. Effect of zileuton (A-64077) on
the 5-lipoxygenase activity of human whole blood ex vivo. Agents
Actions 1991, 34, 117–120.
(9) Labelle, M.; Belley, M.; Gareau, Y.; Gauthier, J. Y.; Guay, D.;
Gordon, R.; Grossman, S. G.; Jones, T. R.; Leblanc, Y.;
McAuliffe, M.; McFarlane, C.; Masson, P.; Metters, K. M.;
Ouimet, N.; Patrick, D. H.; Piechuta, H.; Rochette, C.; Sawyer,
N.; Xiang, Y. B.; Pickett, C. B.; Ford-Hutchinson, A. W.;
Zamboni, R. J.; Young, R. N. Discovery of MK-0476, a potent
and orally active leukotriene D4 receptor antagonist devoid of
peroxisomal enzyme induction. Bioorg. Med. Chem. Lett. 1995,
5 (3), 283–288.
(10) Matassa, V. G.; Maduskuie, T. P.; Shapiro, H. S.; Hesp, B.; Snyder,
D. W.; Aharony, D.; Krell, R. D.; Keith, R. A. Evolutionof a Series
of Peptidoleukotriene Antagonists: Synthesis and Structure/Acti-
vity Relationships of 1,3,5-Substituted Indoles and Indazoles.
J. Med. Chem. 1990, 33, 1781–1790.
(11) Samuelsson, B.; Funk, C. D. Enzymes involved in the biosynthesis
of leukotriene B4. J. Biol. Chem. 1989, 264, 19469–19472.
(12) (a) Lewis, R. A.; Austen, K. F.; Soberman, R. J. Leukotrienes and
other products of the 5-lipoxygenase pathway. Biochemistry and
relation to pathology in human diseases. N. Engl. J. Med. 1990, 232,
645–655. (b) Werz, O.; Steinhilber, D. Therapeutic options for
5-lipoxygenase inhibitors. Pharmacol. Ther. 2006, 112, 701–718.
(13) Mitsunobu, F.; Mifune, T.; Hosaki, Y.; Ashida, K.; Tsugeno, H.;
Okamoto, M.; Takata, S.; Tanizaki, Y. Enhanced production of
leukotrienes by peripheral leukocytes and specific IgE antibodies in
patients with chronic obstructive pulmonary disease. J. Allergy
Clin. Immunol. 2001, 107, 492–498.
References
(1) Helgadottir, A.; Manolescu, A.; Thorleifsson, G.; Jonsdottir, H.;
Thorsteinsdottir, U.; Samani, N. J.; Gretarsdottir, S.; Johannsson,
H.; Gudmundsson, G.; Grant, S. F. A.; Sveinbjornsdottir, S.;
Valdimarsson, E. M.; Matthiasson, S. E.; Gudmundsdottir, O;
Gurney, M.; Sainz, J.; Thorhallsdottir; Andresdottir, M.; Frigge,
M. L.; Gudnason, V.; Kong, A.; Topol, E. J.; Thorgeirsson, G.;
Gulcher, J. R.; Hakonarson, H.; Stefansson, K. The gene encoding
5-lipoxygenase activating protein confers risk of myocardial in-
farction and stroke. Nat. Genet. 2004, 36, 233–239.
(2) Helgadottir, A.; Manolescu, A.; Helgason, A.; Thorleifsson, G.;
Thorsteinsdottir, U.; Gudbjartsson, D. F.; Gretarsdottir, S.;
Magnusson, K. P.; Gudmundsson, G.; Hicks, A.; Jonsson, T.;
Grant, S. F. A.; Sainz, J.; O’Brien, S. J.; Sveinbjornsdottir, S.;
Valdimarsson, E. M.; Matthiasson, S. E.; Levey, A. I.; Abramson,
J. L.; Reilly, M.; Vaccarino, V.; Wolfe, M.; Gudnason, V.;
Quyyumi, A. A.; Topol, E. J.; Rader, D. J.; Thorgeirsson, G.;
Gulcher, J. R.; Hakonarson, H.; Kong, A.; Stefansson, K. A
variant of the gene encoding leukotriene A4 hydrolase confers
ethnicity-specific risk of myocardial infarction. Nat. Genet. 2006,
38, 68–74.
(3) Meng, C. Q. Atherosclerosis is an inflammatory disorder after all.
Curr. Top. Med. Chem 2006, 6, 93–102.
(4) Spanbroek, R.; Grabner, R.; Lotzer, K.; Hildner, M.; Urbach, A.;
Ruhling, K.; Moos, M. P.; Kaiser, B.; Cohnert, T. U.; Wahlers, T.;
Zieske, A.; Plenz, G.; Robenek, H.; Salbach, P.; Kuhn, H.;
Radmark, O.; Samuelsson, B.; Habenicht, A. J. Expanding expres-
sion of the 5-lipoxygenase pathway within the arterial wall during
human atherogenesis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100 (3),
1238–1243.
(5) Cipollone, F.; Mezzetti, A.; Fazia, M. L.; Cuccurullo, C.; Iezzi, A.;
Ucchino, S.; Spigonardo, F.; Bucci, M.; Cuccurullo, F.; Prescott, S.
M.; Stafforini, D. M. Association between 5-lipoxygenase expres-
sion and plaque instability in humans. Arterioscler. Thromb. Vasc.
Biol. 2005, 25, 1665–1670.
(14) Okano-Mitani, H.; Ikai, K.; Imamura, S. Leukotriene A4 hydro-
lase in peripheral leukocytes of patients with atopic dermatitis.
Arch. Dermatol. Res. 1996, 288, 168–172.
(15) Klickstein, L. B.; Shapleigh, C.; Geotzl, E. J. Lipoxygenation of
arachidonic acid as a source of polymorphonuclear leukocyte
chemotactic factors in synovial fluid and tissue in rheumatoid
arthritis and spondyloarthritis. J. Clin. Invest. 1980, 66, 1166–
1170.
(16) (a) Penning, T. D.; Askonas, L. J.; Djuric, S. W.; Haack, R. A.; Yu,
S. S.; Michener, M. L.; Krivi, G. G.; Pyla, E. Y. Kelatorphan and
related analogs: Potent and selective inhibitors of leukotriene A4
hydrolase. Bioorg. Med. Chem. Lett. 1995, 5, 2517–2522. (b) Hogg,
(6) Qiu, H.; Gabrielsen, A.; Agardh, H. E.; Wan, M.; Wetterholm, A.;
Wong, C. H.; Hedin, U.; Swedenborg, J.; Hansson, G. K.;
€
Samuelsson, B.; Paulsson-Berne, G.; Haeggstrom, J. Z. Expression
of 5-lipoxygenase and leukotriene A4 hydrolase in human athero-
sclerotic lesions correlates with symptoms of plaque instability.
Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (21), 8161–8166.
(7) (a) Lewis, R. A.; Austen, K. F.; Soberman, R. J. Leukotrienes and
other products of the 5-lipoxygenase pathway. Biochemistry and
relationto pathologyin human diseases. N. Engl. J. Med. 1990, 232,
645–655. (b) Drazen, J. M.; Austen, K. F. Leukotrienes and airway
€
J. H.; Ollmann, I. R.; Haeggstrom, J. Z.; Wetterholm, A.; Samuelsson,
B.; Wong, C. H. Amino hydroxamic acids as potent inhibitors of