LETTER
Synthesis of Substituted Quinolines
2799
Table 2 Gold-Catalyzed Synthesis of Quinolines via Dimerization of 2-Ethynylanilinesa (continued)
Entry
15
2-Ethynylaniline
Substituted quinolineb
Time (min)
Yield (%)c
Me
O2N
NH2
O2N
55
48
N
N
N
N
NH2
1o
NO2
2o
a All reactions were carried out at reflux temperature in MeCN solvent using 5 mol% of AuCl3 and 10 mol% of AgOTf under nitrogen atmo-
sphere.
b All products were characterized by IR, 1H NMR, 13 C NMR, and MS.
c Isolated yield.
Chem. Mater. 1993, 5, 633. (g) Jenekhe, S. A.; Lu, L.;
Alam, M. M. Macromolecules 2001, 34, 7315. (h)Agrawal,
A. K.; Jenekhe, S. A.; Vanherzeele, H.; Meth, J. S. J. Phys.
Chem. 1992, 96, 2837. (i) Jegou, G.; Jenekhe, S. A.
Macromolecules 2001, 34, 7926. (j) Lu, L.; Jenekhe, S. A.
Macromolecules 2001, 34, 6249. (k) Agrawal, A. K.;
Jenekhe, S. A. Chem. Mater. 1996, 8, 579. (l) Jenekhe, S.
A.; Zhang, X.; Chen, X. L.; Choong, V. E.; Gao, Y.; Hsieh,
B. R. Chem. Mater. 1997, 9, 409. (m) Zhang, X.; Shetty, A.
S.; Jenekhe, S. A. Macromolecules 1999, 32, 7422.
(n) Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Macromolecules
2000, 33, 2069.
In summary, a catalytic system of AuCl3/AgOTf effects
the dimerization of 2-ethynylanilines leading to polysub-
stituted quinolines in good to excellent yield. This proto-
col is amenable to substrates possessing functionalities
such as nitro, ether, cyano, ester, and heteroaromatic ex-
hibiting good functional-group tolerance. No solvent ex-
traction, the safe catalyst, and short reaction time are some
of the noteworthy advantages of this protocol. Further
synthetic applications of this novel dimerization to more
complex heterocyclic ring systems are currently under in-
vestigation.
(4) (a) Saito, I.; Sando, S.; Nakatani, K. Bioorg. Med. Chem.
2001, 9, 2381. (b) He, C.; Lippard, S. J. J. Am. Chem. Soc.
2001, 40, 1414.
(5) Balasubramanian, M.; Keay, J. G. In Comprehensive
Heterocyclic Chemistry II, Vol. 5; Katritzky, A. R.; Rees, C.
W.; Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996,
245–300.
Acknowledgment
The authors thank the Council of Scientific and Industrial Research,
New Delhi, India for the research fellowship.
(6) For traditional methods of quinoline synthesis, see:
(a) Jones, G. In Comprehensive Heterocyclic Chemistry II,
Vol. 5; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon Press:
New York, 1996, 167. (b) Cho, C. S.; Oh, B. H.; Kim, T. J.;
Kim, T. J.; Shim, S. C. Chem. Commun. 2000, 1885.
(c) Jiang, B.; Si, Y. G. J. Org. Chem. 2002, 67, 9449.
(d) Skraup, H. Ber. Dtsch. Chem. Ges. 1880, 13, 2086.
(e) Friedländer, P. Ber. Dtsch. Chem. Ges. 1882, 15, 2572.
(f) Mansake, R. H.; Kulka, M. Org. React. 1953, 7, 59.
(g) Linderman, R. J.; Kirollos, K. S. Tetrahedron Lett. 1990,
31, 2689. (h) Theoclitou, M. E.; Robinson, L. A.
References and Notes
(1) (a) Michael, J. P. Nat. Prod. Rep. 2007, 24, 223.
(b) Michael, J. P. Nat. Prod. Rep. 2005, 22, 627.
(c) Michael, J. P. Nat. Prod. Rep. 2004, 21, 650. (d)Larsen,
R. D.; Corley, E. G.; King, A. O.; Carrol, J. D.; Davis, P.;
Verhoeven, T. R.; Reider, P. J.; Labelle, M.; Gauthier, J. Y.;
Xiang, Y. B.; Zamboni, R. J. J. Org. Chem. 1996, 61, 3398.
(e) Chen, Y. L.; Fang, K. C.; Sheu, J. Y.; Hsu, S. L.; Tzeng,
C. C. J. Med. Chem. 2001, 44, 2374. (f) Roma, G.; Braccio,
M. D.; Grossi, G.; Mattioli, F.; Ghia, M. Eur. J. Med. Chem.
2000, 1021. (g) Kalluraya, B.; Sreenivasa, S. Farmaco
1998, 53, 399. (h) Dube, D.; Blouin, M.; Brideau, C.; Chan,
C. C.; Dermarsis, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R.
W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari,
P.; Young, R. N. Bioorg. Med. Chem. Lett. 1998, 8, 1255.
(i) Kouznetzov, V. V.; Mendez, L. Y. V.; Gomez, C. M. M.
Curr. Org. Chem. 2005, 9, 141. (j) Arcadi, A.; Marinelli, F.;
Rossi, E. Tetrahedron 1999, 55, 13233.
Tetrahedron Lett. 2002, 43, 3907.
(7) For recent advances in quinoline synthesis, see: (a) Horn,
J.; Marsden, S. P.; Nelson, A.; House, D.; Weingarten, G. G.
Org. Lett. 2008, 10, 4117. (b) Xiao, F.; Chen, Y.; Liu, Y.;
Wang, J. Tetrahedron 2008, 64, 2755. (c) Isobe, A.; Takagi,
J.; Katagiri, T.; Uneyama, K. Org. Lett. 2008, 10, 2657.
(d) O’Dell, D. K.; Nicholas, K. M. J. Org. Chem. 2003, 68,
6427. (e) Taguchi, K.; Sakaguchi, S.; Ishii, Y. Tetrahedron
Lett. 2005, 46, 4539. (f) Lekhok, K. C.; Prajapati, D.;
Boruah, R. C. Synlett 2008, 655. (g) Jacob, J.; Jones, W. D.
J. Org. Chem. 2003, 68, 3563. (h) Abbiati, G.; Arcadi, A.;
Canevari, V.; Capezzuto, L.; Rossi, E. J. Org. Chem. 2005,
70, 6454. (i) Amii, H.; Kishikawa, Y.; Uneyama, K. Org.
Lett. 2001, 3, 1109.
(2) Kleeman, A.; Engel, J.; Kutscher, B.; Reichert, D.
Pharmaceutical Substances. Synthesis, Patents,
Applications; Thieme: Stuttgart, 2001.
(3) (a) Kim, H. M.; Jin, J.-L.; Lee, C. J.; Kim, N.; Park, K. H.
Bull. Chem. Soc. Jpn. 1998, 71, 2945. (b) Stille, J. K.
Macromolecules 1981, 14, 870. (c) Agrawal, A. K.;
Jenekhe, S. A. Macromolecules 1991, 24, 6806.
(8) For reviews of gold-catalyzed organic reactions, see:
(a) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed.
2006, 45, 7896. (b) Hashmi, A. S. K. Chem. Rev. 2007, 107,
3180. (c) Amijs, C. H. M.; Ferrer, C.; Echaverren, A. M.
Chem. Commun. 2007, 698. (d) Fürstner, A.; Davies, P. W.
(d) Agrawal, A. K.; Jenekhe, S. A. Chem. Mater. 1992, 4,
95. (e) Agrawal, A. K.; Jenekhe, A. K.; Jenekhe, S. A. Chem.
Mater. 1993, 28, 895. (f) Agrawal, A. K.; Jenekhe, S. A.
Synlett 2009, No. 17, 2795–2800 © Thieme Stuttgart · New York