H. P. Hemantha, V. V. Sureshbabu / Tetrahedron Letters 50 (2009) 7062–7066
7065
5. Sureshbabu, V. V.; Naik, S. A.; Hemantha, H. P.; Narendra, N.; Das, U.; Row, T. N.
G. J. Org. Chem. 2009, 74, 5260–5266.
6. Ramanarao, R. V.; Sureshbabu, V. V. Tetrahedron Lett. 2006, 47, 9139–9141.
7. Sureshbabu, V. V.; Sudarshan, N. S.; Venkataramanarao, R. Int. J. Pept. Res. Ther.
2008, 14, 149–156.
8. (a) Sureshbabu, V. V.; Venkataramanarao, R.; Naik, S. A.; Chennakrishnareddy,
G. Tetrahedron Lett. 2007, 48, 7038–7041; (b) Sureshbabu, V. V.; Hemantha, H.
P.; Naik, S. A. Tetrahedron Lett. 2008, 49, 5133–5136.
9. (a) Rudorf, W. D. J. Sulfur Chem. 2007, 28, 295–339; (b) Hayashi, T.; Hori, I.;
Oishi, T. J. Am. Chem. Soc. 1983, 105, 2909–2911.
chilled solution of HClꢂH–Phe–OMe in dry THF with TEA and CS2.
This was followed by the addition of a solution of N-Fmoc-Val-
W
[CH2–I]. The reaction was complete in about an hour as adjudged
by TLC. A simple work-up followed by column chromatography
yielded pure N-protected dithiocarbamate-linked dipeptidomi-
metic 3a in 72% yield (Scheme 1).31 The generality of this reaction
was demonstrated with a series of N-Fmoc/Z-amino alkyl iodides
and amino acid esters to afford the corresponding dipeptidomi-
metics 3b–g in good to moderate yields (Table 1). The products
were found to be analytically pure and the protocol was racemiza-
tion free as evident by HPLC and NMR analyses.32
In the subsequent study, the chain elongation of dipeptidomi-
metics 3 on N-terminal was undertaken to synthesize tripeptidom-
imetics containing two dithiocarbamate linkages in the backbone.
Starting with 3a, the amine was deprotected using 50% diethyl-
amine (DEA) in CH2Cl2 and the resulting amino-free dipeptidomi-
10. Hou, X.; Ge, Z.; Wang, T.; Guo, W.; Cui, J.; Cheng, T.; Lai, C.; Li, R. Bioorg. Med.
Chem. Lett. 2006, 16, 4214–4219.
11. (a) Len, C.; Postel, D.; Ronco, G.; Villa, P.; Goubert, C.; Jeufrault, E.; Mathon, B.;
Simon, H. J. Agric. Food. Chem. 1997, 45, 3–6; (b) Ronconi, L.; Marzano, C.;
Zanello, P.; Corsini, M.; Miolo, G.; Macca, C.; Trevisan, A.; Fregona, D. J. Med.
Chem. 2006, 49, 1648–1657; (c) Cao, S.-L.; Feng, Y.-P.; Jiang, Y.-Y.; Liu, S.-Y.;
Ding, G.-Y.; Li, R.-T. Bioorg. Med. Chem. Lett. 2005, 15, 1915–1917.
12. (a) Morf, P.; Raimondi, F.; Nothofer, H.-G.; Schnyder, B.; Yasuda, A.; Wessels, J.
M.; Jung, T. A. Langmuir 2006, 22, 658–663; (b) Bongar, B. P.; Sadavarte, V. S.;
Uppalla, L. S. J. Chem. Res. 2004, 9, 450–451.
13. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.;
Wiley: Interscience, New York, 1999. pp 484–486.
14. Plyusnin, V. F.; Grivin, V. P.; Larionov, S. V. Coord. Chem. Rev. 1997, 159, 121–
133.
15. (a) Hidaka, S.; Funakoshi, T.; Shimada, H.; Tsuroka, M.; Kojima, S. J. Appl. Toxicol.
1995, 15, 267–273; (b) Fujii, S.; Yoshimura, T. Coord. Chem. Rev. 2000, 198, 89–
99.
16. Goel, A.; Mazur, S. J.; Fattah, R. J.; Hartman, T. L.; Turpin, J. A.; Huang, M.; Rice,
W. G.; Appella, E.; Inman, J. K. Bioorg. Med. Chem. Lett. 2002, 12, 767–770.
17. (a) Walter, W.; Bode, K. D. Angew. Chem., Int. Ed. Engl. 1967, 6, 281–293; (b)
Garin, J.; Melandz, E.; Merchain, F. L.; Tejero, T.; Urid, S.; Ayestaron, J. Synthesis
1991, 147–157.
18. Xia, S.; Wang, X.; Ge, Z.-M.; Cheng, T.-M.; Li, R.-T. Tetrahedron 2009, 65, 1005–
1009.
19. Ranu, B. C.; Saha, A.; Banerjee, S. Eur. J. Org. Chem. 2008, 519–523.
20. Len, C.; Boulogne-Merlot, A.-S.; Postel, D.; Ronco, G.; Villa, P. J. Agric. Food Chem.
1996, 44, 2856–2858.
metic was reacted with CS2, TEA and N-Fmoc-Ala-w[CH2–I] 1 to
afford N-Fmoc-tripeptidomimetic 4a possessing two dithiocarba-
mate groups (Scheme 2). Employing this protocol, four more
dithiocarbamate-linked tripeptidomimetics 4b–e were prepared
and isolated successfully that were adequately characterized.33
Finally, the protocol was further explored to describe two other
types of dithiocarbamate-linked peptidomimetics starting from N-
protected amino acid derived vicinal diamines 5. The required N-
protected amino alkyl amines 5 were synthesized using known
protocol. N-Fmoc amino alkyl amines34 were prepared by reducing
the corresponding alkyl azides under catalytic hydrogenation,
while N-Boc and N-Z-amino alkyl amines were synthesized by
LiAlH4-mediated reduction of their nitriles.5 Then a reaction of 5
with CS2 in the presence of TEA gave the corresponding dithiocar-
bamic acid intermediate which without isolation, was treated with
either N-protected amino alkyl iodide 1 or bromo acetic acid ester
6 to afford dithiocarbamate-linked orthogonally protected dipepti-
domimetics 7a–c and simple dipeptidomimetics 8a–c, respectively
(Scheme 3, Table 2). All the compounds were isolated after a sim-
ple work-up as gummy solids and fully characterized using mass
and NMR spectroscopic techniques.
21. Rafin, C.; Veignie, E.; Sancholle, M. J. Agric. Food Chem. 2000, 48, 5283–5287.
22. Salvatore, R. N.; Sahab, S.; Jung, K. W. Tetrahedron Lett. 2001, 42, 2055–2058.
23. Guo, B.; Ge, Z.; Cheng, T.; Li, R. Synth. Commun. 2001, 31, 3021–3025.
24. Chaturvedi, D.; Ray, S. Tetrahedron Lett. 2006, 47, 1307–1309.
25. Katritzky, A. R.; Witek, R. M.; Rodriguez-Garcia, V.; Mohapatra, P. P.; Rogers, J.
W.; Cusido, J.; Abdel-Fattah, A. A. A.; Steel, P. J. J. Org. Chem. 2005, 70, 7866–
7881.
26. Azizi, N.; Aryanasab, F.; Saidi, M. R. Org. Lett. 2006, 8, 5275–5277.
27. Halimehjani, A. Z.; Maleki, H.; Saidi, M. R. Tetrahedron Lett. 2009, 50, 2747–
2749.
28. Azizi, N.; Aryanasab, F.; Torkiyan, L.; Ziyaei, A.; Saidi, M. R. J. Org. Chem. 2006,
71, 3634–3635.
In conclusion, we report a simple and mild protocol for the syn-
thesis of a new class of dithiocarbamate-linked peptidomimetics
using CS2, TEA and corresponding amines and appropriate halides.
The reaction is fast, high yielding and is devoid of the use of toxic
reagents. The protocol is racemization free and all the synthesized
compounds were isolated and well characterized.
29. Azizi, N.; Pourhasan, B.; Aryanasab, F.; Saidi, M. R. Synlett 2007, 8, 1239–1242.
30. Mondal, S.; Fan, E. Synlett 2006, 306–308.
31. Typical procedure for the synthesis of dithiocarbamate-linked dipeptidomimetic
3a: To a chilled solution of HClꢂH–Phe–OMe (3 mmol) and TEA (8 mmol) in dry
THF (15 mL) was added CS2 (6 mmol). After 10 min, a solution of N-Fmoc-Val-
w
[CH2–I] (4 mmol) in THF was added slowly and the reaction mixture was
allowed to warm to rt gradually and stirred for two hours. After completion of
the reaction (TLC), it was evaporated under vacuum and the crude was
partitioned between ethyl acetate (15 mL) and water. The organic layer was
washed with citric acid solution (10%, 10 mL), water and brine. After drying
over sodium sulfate, the organic phase was concentrated and the crude was
purified through column chromatography using EtOAc in hexane (10–15%) as
eluent.
Acknowledgements
We thank the Department of Science and Technology (DST),
Government of India (Grant No. SR/S1/OC-26/2008) and the Coun-
cil of Scientific and Industrial Research (CSIR), New Delhi for finan-
cial support.
32. Note: To confirm the optical purity of the synthesized dithiocarbamates, a
model study was carried out as follows: Two epimeric dithiocarbamate
compounds were prepared by coupling N-Fmoc-Phe-w[CH2–I] with (R)- and
(S)-1-phenylethylamines separately. The 1H NMR spectra of methyl group of
these two compounds contained distinct doublets at d values 1.35, 1.37 and
1.38, 1.40 ppm, respectively, indicating the absence of racemization during the
course of the reaction. Also, the HPLC profiles of the samples of these two
epimers had peak at Rt values 16.4 and 17.1, respectively, while the equimolar
mixture of these epimers prepared by reacting racemic phenylethylamine with
References and notes
1. Sewald, N.; Jakubke, H. D. In Peptides: Chemistry and Biology; Wiley-VCH, 2002.
2. (a) Conradi, R. A.; Hilgers, A. R.; Ho, N. F. H.; Burton, P. S. Pharm. Res. 1992, 9,
435–439; (b)Pseudo-Peptides in Drug Discovery; Nielsen, P. E., Ed.; Wiley-VCH:
Germany, 2004; (c)Peptides: Chemistry and Biology; Sewald, N., Jakubke, H.-D.,
Eds.; Wiley-VCH: Weinheim, Germany, 2002. p 354.
3. (a) Vagner, J.; Qu, H.; Hruby, V. J. Curr. Opin. Chem. Biol. 2008, 12, 292–296; (b)
Nowick, J. S. Org. Biomol. Chem. 2006, 4, 3869–3885; (c)Synthesis of Peptides and
Peptidomimetics (Houben-Weyl); Goodman, M., Felix, A., Moroder, L., Toniolo, C.,
Eds.; Georg Thieme: Stuttgart, Germany, 2003; Vol. E22c,. and references cited
therein (d) Cho, C. Y.; Moran, E. J.; Cherry, S. R.; Stephans, J. C.; Fodor, S. P. A.;
Adams, C. L.; Sundaram, A.; Jacobs, J. W.; Schultz, P. G. Science 1993, 261, 1303–
1305; (e) Boeijen, A.; van Ameijde, J.; Liskamp, R. M. J. J. Org. Chem. 2001, 66,
8454–8462.
Fmoc-Phe-w[CH2–I] had two distinct peaks at Rt values 16.5 and 17.1 min. This
confirmed that the samples of the epimers were optically pure.
33. Spectral data for selected compounds: Compound 3b: 1H NMR (300 MHz, CDCl3):
d 0.94 (d, 6H, J = 6.3 Hz), 1.30 (d, 3H, J = 5.8 Hz), 1.72–1.74 (m, 3H), 2.04 (m,
2H), 3.73 (s, 3H), 3.77 (m, 1H), 3.80 (m, 1H), 4.20 (t, 1H, J = 4.8 Hz), 4.39 (d, 2H,
J = 6.7 Hz), 5.15 (br, 1H), 5.16 (br, 1H), 7.29–7.76 (m, 8H) ppm; 13C NMR
(100 MHz, CDCl3): d 18.2, 19.9, 20.3, 23.4, 28.1, 40.1, 43.3, 47.5, 50.7, 52.5, 65.2,
126.6, 127.2, 127.9, 128.1, 141.2, 143.7, 154.6, 173.0, 195.3 ppm; IR: 1741,
1696, 1119 cmꢁ1
.
Compound 3c: 1H NMR (300 MHz, CDCl3): d 1.71 (m, 2H), 1.92 (m, 2H), 2.03 (s,
3H), 2.55 (m, 4H), 2.83 (d, 2H, J = 5.5 Hz), 3.72 (t, 2H, J = 7.1 Hz), 3.76 (s, 3H),
4.13 (t, 1H, J = 4.8 Hz), 4.23 (d, 2H, J = 6.2 Hz), 4.42 (m, 2H), 5.29 (br, 1H), 7.31–
7.77 (m, 8H) ppm; 13C NMR (100 MHz, CDCl3): d 16.3, 21.4, 26.4, 29.2, 30.7,
33.7, 46.3, 47.5, 49.8, 50.9, 55.6, 65.4, 127.2, 127.7, 128.4, 128.7, 140.0, 141.3,
4. (a) Patil, B. S.; Vasanthakumar, G. R.; Sureshbabu, V. V. J. Org. Chem. 2003, 68,
7274–7280; (b) Sureshbabu, V. V.; Patil, B. S.; Ramanarao, R. V. J. Org. Chem.
2006, 71, 7697–7705.
155.7, 172.4, 194.2 ppm; IR: 1747, 1712, 1125 cmꢁ1
.