Letter
Journal of Medicinal Chemistry, 2009, Vol. 52, No. 24 7969
the mimetics. In this vein, a cell type with less specific adhesion
properties toward laminin 1 may give a lower cut-off in the
activity, within which differential or no response to the
conformational mimetics may be observed. To establish this,
we performed the same set of tests using HeLa cells. These are
human cervical carcinoma cells that were shown to be con-
ditionally adherent to laminin and its components.26,27 Little
has been reported on the binding of HeLa cells to 2-like
peptides, which may partly be attributed to the moderate
affinity of the cells to the peptides.28 In our case, HeLa
adhered to laminin 1 less efficiently than did HT-1080 and
B16-F10 cells (Figure 2d). Likewise, lower but medially dose-
dependent attachments were observed for the mimetics. On
the basis of the expressed activities, two groupings could be
identified. In one, peptides that gave more appreciable β-form
CD spectra (6, 7, 15) also gave stronger attachment responses
(Figures 2d and S1, Table S2). In the other, structurally
amorphous 3, 4, and 8 yielded lower responses that were also
comparable with those for 2. 11, which showed intermediate
activities in HT-1080 and B16-F10, could also be placed
between the two groups in HeLa.
(8) Hand, P. H.; Thor, A.; Schlom, J.; Rao, C. N.; Liotta, L. Expres-
sion of laminin receptor in normal and carcinomatous human
tissues as defined by a monoclonal antibody. Cancer Res. 1985,
45, 2713–2719.
ꢁ
(9) Karpatova, M.; Tagliabue, E.; Castronovo, V.; Magnifico, A.;
ꢁ
Ardini, E.; Morelli, D.; Belotti, D.; Colnaghi, M. I.; Menard, S.
Shedding of the 67-kD laminin receptor by human cancer cells.
J. Cell. Biochem. 1996, 60, 226–234.
(10) Ruoslahti, E. Specialization of tumour vasculature. Nat. Rev.
Cancer 2002, 2, 83–90.
(11) Graf, J.; Iwamoto, Y.; Sasaki, M.; Martin, G. R.; Kleinman, H. K.;
Robey, F. A.; Yamada, Y. Identification of an amino acid sequence
in laminin mediating cell attachment, chemotaxis, and receptor
binding. Cell 1987, 48, 989–996.
(12) Graf, J.; Ogle, R. C.; Robey, F. A.; Sasaki, M.; Martin, G. R.;
Yamada, Y.; Kleinman, H. K. A pentapeptide from the laminin B1
chain mediates cell adhesion and binds the 67,000 laminin receptor.
Biochemistry 1987, 26, 6896–6900.
(13) Iwamoto, Y.; Robey, F. A.; Graf, J.; Sasaki, M.; Kleinman, H. K.;
Yamada, Y.; Martin, G. R. YIGSR, a synthetic laminin pentapep-
tide, inhibits experimental metastasis formation. Science 1987, 238,
1132–1134.
(14) Sakamoto, N.; Iwahana, M.; Tanaka, N. G.; Osada, Y. Inhibition
of angiogenesis and tumor growth by a synthetic laminin peptide,
CDPGYIGSR-NH2. Cancer Res. 1991, 51, 903–906.
(15) McLane, M. A.; Joerger, T.; Mahmoud, A. Disintegrins in health
and disease. Front. Biosci. 2008, 13, 6617–6637.
(16) Heckmann, D.; Kessler, H. Design and chemical synthesis of
integrin ligands. Methods Enzymol. 2007, 426, 463–503.
(17) Wermuth, J.; Goodman, S. L.; Jonczyk, A.; Kessler, H. Stereo-
isomerism and biological activity of the selective and superactive
Rvβ3 integrin inhibitor cyclo(-RGDfV-) and it retro-inverso pep-
tide. J. Am. Chem. Soc. 1997, 119, 1328–1335.
In summary, the obtained results reveal the general ten-
dency of the designed mimetics with more appreciable β-con-
formations to generate stronger cell attachment responses.
Although the observed effect is not sufficiently discriminative
to single out one particular construct, the findings stress the
conformational constraining of isolated cell-adhesion sites as
an efficient means toward the development of selective anti-
metastatic disintegrins.
€
(18) Aumailley, M.; Gurrath, M.; Muller, G.; Calvete, J.; Timpl, R.;
Kessler, H. Arg-Gly-Asp constrained within cyclic pentapeptides.
Strong and selective inhibitors of cell adhesion to vitronectin and
laminin fragment P1. FEBS Lett. 1991, 291, 50–54.
(19) Zhao, M.; Kleinman, H. K.; Mokotoff, M. Synthetic laminin-like
peptides and pseudopeptides as potential antimetastatic agents.
J. Med. Chem. 1994, 37, 3383–3388.
(20) Pikkarainen, T.; Eddy, R.; Fukushima, Y.; Byers, M.; Shows, T.;
Pihlajaniemi, T.; Saraste, M.; Tryggvason, K. Human laminin B1
chain. J. Biol. Chem. 1987, 262, 10454–10462.
(21) Ostheimer, G. J.; Starkey, J. R.; Lambert, C. G.; Helgerson, S. L.;
Dratz, E. A. NMR constrained solution structures for laminin
peptide 11. Analogs define structural requirements for inhibition of
tumor cell invasion of basement membrane matrix. J. Biol. Chem.
1992, 267, 25120–25128.
(22) Brahms, S.; Brahms, J.; Spach, G.; Brack, A. Identification of beta,
beta-turns and unordered conformations in polypeptide chains
by vacuum ultraviolet circular dichroism. Proc. Natl. Acad. Sci.
U.S.A. 1977, 74, 3208–3212.
Acknowledgment. We thank Bristol Cancer Research
Fund and University of Leicester for financial support and
Harry Mellor, Ruth Rollason, and George Banting (Univer-
sity of Bristol) for help with biological assays.
Supporting Information Available: Experimental procedures
including synthesis, characterization, spectroscopic data, and
biological assays. This material is available free of charge via the
References
(23) Perczel, A.; Fasman, G. Quantitative analysis of cyclic β-turn
models. Protein Sci. 1992, 1, 378–395.
(24) Circular Dichroism and the Conformational Analysis of Bio-
molecules; Fasman, G. D., Ed.; Plenum Press: New York, 1996;
738 pp.
(1) Engbring, J. A.; Kleinman, H. K. The basement membrane matrix
in malignancy. J. Pathol. 2003, 200, 465–470.
(2) Leber, M. F.; Efferth, T. Molecular principles of cancer invasion
and metastasis. Int. J. Oncol. 2009, 34, 881–895.
(3) Luo, B. H.; Springer, T. A. Integrin structures and conformational
signaling. Curr. Opin. Cell Biol. 2006, 18, 579–586.
(4) Kleinman, H. K.; Cannon, F. B.; Laurie, G. W.; Hassell, J. R.;
Aumailley, M.; Terranova, V. P.; Martin, G. R.; DuBois-Dalcq,
M. Biological activities of laminin. J. Cell. Biochem. 1985, 27, 317–
325.
(25) Yamamura, K.; Kibbey, M. C.; Kleinman, H. K. Melanoma cells
selected for adhesion to laminin peptides have different malignant
properties. Cancer Res. 1993, 53, 423–428.
(26) Kawahara, E.; Imai, K.; Kumagai, S.; Yamamoto, E.; Nakanishi,
I. Inhibitory effects of adhesion oligopeptides on the invasion of
squamous carcinoma cells with special reference to implication of
Rv integrins. J. Cancer Res. Clin. Oncol. 1995, 121, 133–140.
(27) Sugihara, K.; Saito, T.; Okadome, M.; Sonoda, K.; Kobayashi, H.;
Kamura, T.; Tsukamoto, N.; Nakano, H. The promotion of
invasion through the basement membrane of cervical carcinoma
cells by fibronectin as a chemoattractant. Cancer Lett. 1994, 79,
167–173.
(28) Hirano, Y.; Okuno, M.; Hayashi, T.; Goto, K.; Nakajima, A. Cell-
attachment activities of surface immobilized oligopeptides RGD,
RGDS, RGDV, RGDT, and YIGSR toward five cell lines. J.
Biomater. Sci., Polym. Ed. 1993, 4, 235–243.
(5) Nelson, J.; McFerran, N. V.; Pivato, G.; Chambers, E.; Doherty,
C.; Steele, D.; Timson, D. J. The 67 kDa laminin receptor:
structure, function and role in disease. Biosci. Rep. 2008, 28,
33–48.
ꢀ
(6) Ardini, E.; Tagliabue, E.; Magnifico, A.; Buto, S.; Castronovo, V.;
ꢁ
Colnaghi, M. I.; Menard, S. Co-regulation and physical associa-
tion of the 67-kDa monomeric laminin receptor and the R6β4
integrin. J. Biol. Chem. 1997, 272, 2342–2345.
(7) Belkin, A. M.; Stepp, M. A. Integrins as receptors for laminins.
Microsc. Res. Tech. 2000, 51, 280–301.