Ph2PCF3 (1). 31P NMR d = 2.5 [q, J(PF) = 73.8 Hz], 19F NMR
2
were solved by direct methods, with full-matrix least-squares refinement
on F2 using the SHELXL program.26 Non-hydrogen atoms were
refined with anisotropic thermal parameters; hydrogen atoms were
placed in idealised locations.
d = ꢀ55.1 [d, 2J(PF) = 73.8 Hz]. 1H NMR d = 7.7–7.4 (m), literature
(CDCl3), dP 2.8 [2J(PF) = 73.5 Hz], dF ꢀ55.0 [J = 73 Hz].11
Ph2PCF2CF3 (2). 31P NMR d = ꢀ1.9 [tq, 2J(PF) = 56.8, 3J(PF) =
3
3
16.7 Hz], 19F NMR d = ꢀ81.0 [3F, dt, J(PF) = 16.7, J(FF) = 3.0
Hz, CF3], ꢀ113.0 [2F, dq, 2J(PF) = 56.8, 3J(FF) 3.0, CF2], 1H NMR
d = 7.7–7.4 (m), literature (C6D6), dP ꢀ1.4 [J = 58, 17], dF ꢀ80.7
[J = 16.5, 3.1], ꢀ112.6 [J = 57.0, 3.1 Hz].5a
1 See for example: D. W. Allen, Organophosphorus Chem., 2006, 35, 1.
2 See for example: K. D. Cooney, T. R. Cundari, N. W. Hoffman,
K. A. Pittard, M. D. Temple and Y. Zhao, J. Am. Chem. Soc.,
2003, 125, 4318.
3 C. L. Pollock, G. C. Saunders, E. Smyth and V. I. Sorokin,
J. Fluorine Chem., 2008, 129, 142.
4 H. J. Emeleus and J. D. Smith, J. Chem. Soc., 1958, 527;
A. B. Burg and W. Mahler, J. Am. Chem. Soc., 1958, 80,
2334.
5 (a) R. G. Peters, B. L. Bennett, R. C. Schnabel and D. M. Roddick,
Inorg. Chem., 1997, 36, 5962; (b) J. D. Palcic, P. N. Kapoor,
D. M. Roddick and R. G. Peters, Dalton Trans., 2004, 1644.
6 J. J. Kampa, J. W. Nail and R. J. Lagow, Angew. Chem., Int. Ed.
Engl., 1995, 34, 1241.
7 V. Y. Semenii, V. A. Stepanov, N. V. Ignat’ev, G. G. Furin and
L. M. Yagupolskii, Zh. Obshch. Khim., 1985, 55, 2716; N. Ignat’ev
and P. Sartori, J. Fluorine Chem., 2000, 103, 57.
8 E. A. Ganja, C. D. Ontiveros and J. A. Morrison, Inorg. Chem.,
1988, 27, 4535.
9 F. W. Bennett, G. R. A. Brandt, H. J. Emeleus and
R. N. Haszeldine, Nature, 1950, 166, 225; F. W. Bennett,
H. J. Emeleus and R. N. Haszeldine, J. Chem. Soc., 1953, 1565.
10 M. B. Murphy-Jolly, L. C. Lewis and A. J. M. Caffyn, Chem.
Commun., 2005, 4479.
Ph2PC8F17 (3). dP 1.1 [m, 2J(PF) = 56.0 Hz], dF ꢀ81.7 [t, J(FF) =
7.8 Hz, 3F, CF3], ꢀ109.4 [dt, 2J(PF) = 56.0, J(FF) = 13.3, 2F, PCF2],
ꢀ122.1 [m, 2F], ꢀ122.6 [m, 6F], ꢀ123.5 [m, 2F], ꢀ127.0 [m, 2F].
dH 7.7–7.4 (m).
Ph2PCF(CF3)(CF2CF3) (5). dP 3.7 ppm (dddqq, 2J(PFb) = 78.0
Hz, 3J(PFd) = 44.6 Hz, 3J(PFc) = 33.2 Hz, 3J(PFa) = 16.9 Hz,
4J(PFe) = 12.0 Hz). 19F NMR: dFa ꢀ67.8 ppm (3F, ddddq, 3J(PFa) =
16.9 Hz, 3J(FaFb) = 12.1 Hz, 4J(FaFc) = 12.3 Hz, 4J(FaFd) = 5.5 Hz,
5J(FaFe) = 8.6 Hz, PCF(CF3)(CF2CF3)), dFe ꢀ80.0 (3F, ddddq,
4J(PFe) = 12.0 Hz, 4J(FeFa) = 8.6 Hz, 4J(FeFb) = 12.0 Hz,
3J(FeFc)
=
0.1 Hz, 3J(FeFd)
=
0.6 Hz, PCF(CF3)(CF2CF3)),
1
3
dFc ꢀ110.6 ppm (1F, ddqdq, J(FcFd) = 295.6 Hz, J(PFc) = 33.2 Hz,
4J(FcFa) = 12.3 Hz, 3J(FcFb) = 12.0 Hz, 3J(FcFe) = 0.1 Hz,
PCF(CF3)(CFFCF3))
dFd ꢀ114.5 ppm (1F, dddqq, 1J(FdFc) = 295.6 Hz, 3J(FdP) = 44.6 Hz,
3J(FdFb) = 11.9 Hz, 4J(FdFa) = 5.5 Hz, 3J(FdFe) = 0.6 Hz,
2
PCF(CF3)(CFFCF3)), dFb ꢀ183.4 ppm (1F, dqdqd, J(FbP) = 78.0 Hz,
3J(FbFa) = 12.1 Hz, 3J(FbFc ) = 12.0 Hz, 4J(FbFe) = 12.0,
3J(FbFd) = 11.9 Hz, PCF(CF3)(CF2CF3)). dH 7.7–7.4 (m).
Ph2P(c-C6F11
)
(6) dP ꢀ3.4 ppm (td, 3J(PF2ax
) = 84.0 Hz,
2J(PF1) = 68.0 Hz). dF ꢀ110.5 (2F, 3J(PF) = 84.0 Hz, 2J(FF) =
298.3 Hz, F2a,6a), ꢀ122.6 (2F, d, 2J(FF) = 280.0 Hz, F3a,5a), ꢀ124.4
11 P. Eisenberger, I. Kieltsch, N. Armanino and A. Togni, Chem.
Commun., 2008, 1575.
2
2
ppm (1F, d, J(FF) = 288.8 Hz, F4a) ꢀ124.5 (2F, d, J(FF) = 298.3
Hz, F2e,6e), ꢀ138.2 (2F, d, 2J(FF) = 280.0 Hz, F3e,5e), ꢀ142.0 (1F, d,
2J(FF) = 285.5 Hz, F4e), and ꢀ185.8 (1F, m, 2J(PF) = 68.0 Hz, F1a).
dH 7.7–7.4 (m).
12 J. K. Stille, J. Org. Chem., 1987, 52, 748; V. S. Chan,
R. G. Bergman and F. D. Troste, J. Am. Chem. Soc., 2007, 129,
15122; S. E. Vaillard, C. Muck-Lichtenfeld, S. Grimme and
A. Studer, Angew. Chem., Int. Ed., 2007, 46, 6533.
13 M. Fild, P. G. Jones and K. Ruhnau, J. Fluorine Chem., 1991, 54,
387; M. L. Clarke, A. G. Orpen, P. G. Pringle and E. Turley,
Dalton Trans., 2003, 4393.
14 H.-G. Horn and H. J. Lindner, Chem.-Ztg., 1988, 112, 195.
15 L. I. Goryunov, J. Grobe, V. D. Shteingarts, B. Krebs,
A. Lindemann, E.-U. Wrthwein and C. Mck-Lichtenfeld,
Chem.–Eur. J., 2000, 6, 4612; L. I. Goryunov, V. D. Shteingarts,
J. Grobe, B. Krebbs and M. U. Triller, Z. Anorg. Allg. Chem.,
2002, 628, 1770.
16 D. Naumann and J. Kischkewitz, J. Fluorine Chem., 1990, 47,
283.
17 M. Sako, T. Kihara, K. Okada, Y. Ohtani and H. Kawamoto,
J. Org. Chem., 2001, 66, 3610.
18 A. Probst, K. Raab, K. Ulm and K. von Werner, J. Fluorine
Chem., 1987, 37, 223.
19 K. K. Banger, R. P. Banham, A. K. Brisdon, W. I. Cross,
G. Damant, S. Parsons, R. G. Pritchard and A. Sousa-Pedrares,
J. Chem. Soc., Dalton Trans., 1999, 427.
20 O. B. Shawkataly, M.-L. Chong, H.-K. Fun and K. Sivakumar,
Acta Crystallogr., Sect. C, 1996, 52, 1725.
21 A. Karipides and C. M. Cosio, Acta Crystallogr., Sect. C, 1989, 45,
1743.
22 R. P. Hughes, J. S. Overby, A. Williamson, K.-C. Lam,
T. E. Concolino and A. L. Rheingold, Organometallics, 2000, 19,
5190.
23 I. Kovacs, E. Matern and G. Fritz, Z. Anorg. Allg. Chem., 1996,
622, 935.
Ph2PC(CF3)3 (7). dP 15.2 (dectet, 3J(PF) = 12.3 Hz), dF ꢀ60.0
3
(d, J(PF) = 12.2 Hz). dH 7.7–7.4 (m).
i-Pr2PC2F5 (8). dP 24.5 (tq, 2J(PF) = 41.7, 3J(PF) = 14.8 Hz),
dF ꢀ82.4 (dt, 3J(PF) = 14.8, 3J(PF) = 2.9 Hz ), ꢀ111.7 (dq, 2J(PF) = 41.7,
3J(PF) = 2.9 Hz ). dH 1.16 (6H, m, CH3), 2.2 (1H, dsept, J(PH) = 2.4,
2
3J(HH) = 7.1 Hz, CH).
PhMePCF(CF3)2 (9). dP ꢀ12.0 (dsept, 2J(PF) = 61.1, 3J(PF) =
16.4 Hz) dF ꢀ70.2 [ddq, 2J(PF) = 16.4, 3J(FF) = 11.2, 4J(FF) = 9.3 Hz,
CF3], ꢀ71.2 [ddqq, 2J(PF) = 16.4, 3J(FF) = 11.2, 4J(FF) = 9.3,
5J(FH) = 1.5 Hz, CF3], ꢀ190.3 [dsept, 2J(PF) = 61.1, 3J(FF) = 11.0,
2
CF] dH 7.28–7.40 (6H, m), 1.63 (3H, d, J(PH) = 6.0 Hz, CH3).
Synthesis of Ph2P(i-C3F7) (4): A dried Schlenk vessel was charged
with Ph2P(SiMe3) (2.2 cm3, 8.5 mmol) and dry hexane (20 cm3). The
solution was cooled to ꢀ30 1C and i-C3F7I (1.2 cm3, 8.5 mmol) was
added slowly over ca. 30 minutes. The solution was warmed to room
temperature overnight. MeLi (1.6 M in Et2O, 5.4 cm3, 8.6 mmol) was
added to the yellow solution and stirred for 30 minutes. The resulting
white precipitate was filtered off under an inert atmosphere (N2) and
the volatiles removed under vacuum to yield 4 as a white solid
(2.26 g, 75%). Elemental analysis C: 50.88, H: 2.71, P: 8.04%,
C15H10F7P requires: C: 50.84, H: 2.85, P: 8.75%. dP ꢀ0.8 [dsept,
2J(PF) = 74.0, 3J(PF) = 18.0 Hz] dF ꢀ69.6 [dd, 3J(PF) = 18.0,
3J(FF) = 11.9 Hz, CF3], ꢀ184.9 [dsept, 2J(PF) = 74.0, 3J(PF) =
11.9, CF] dH 7.24–7.45 (6H, m), 7.69–7.82 (4H, m)].
y Crystal data for 4: (C15H10F7P): Mr = 354.12; crystal size = 0.15 ꢂ
0.15 ꢂ 0.15 mm3; monoclinic, space group P21/c, a = 8.9091(2),
b = 26.2430(6), c = 6.3928(1) A, b = 99.406(1)1, V = 1474.55(5) A,
Z = 4, rcalcd = 1.595 g cmꢀ3, m = 0.257 mm, l = 0.71073 A, 150(2) K,
2ymax = 511, 2736 reflections collected, 208 parameters and 0 re-
24 P. Majewski, Phosphorus, Sulfur Silicon Relat. Elem., 1998, 134,
399.
straints, GOF on F2 = 1.082, final R indices for I 4 2s(I), wR2
=
25 E. Vincent, L. Verdonck and G. P. Van der Kelen, J. Mol. Struct.,
1980, 65, 239.
¨
26 G. M. Sheldrick, SHELXS97, University of Gottingen, Germany.
0.2181 R1 = 0.0796. Data were collected on a Nonius k-CCD 4-circle
diffractometer, and were corrected for Lorentz, polarisation and
absorption using the multi-scan method. The X-ray structural data
ꢁc
This journal is The Royal Society of Chemistry 2009
6660 | Chem. Commun., 2009, 6658–6660