A. Rolfe, P. R. Hanson / Tetrahedron Letters 50 (2009) 6935–6937
6937
9. Wang, Y.; Busch-Petersen, J.; Wang, F.; Ma, L.; Fu, W.; Kerns, J. K.; Jin, J.;
Palovich, M. R.; Shen, J.-K.; Burman, M.; Foley, J. J.; Schmidt, D. B.; Hunsberger,
G. E.; Sarau, H. M.; Widdowson, K. L. Bioorg. Med. Chem. Lett. 2007, 17, 3864–
3867.
In conclusion, we have developed a microwave-assisted, cop-
per-catalyzed, sequential, one-pot synthesis of benzothiadiazin-
3-one-1,1-dioxides. A variety of derivatives of benzothiadiazin-3-
one-1,1-dioxides can be rapidly accessed by combining a copper-
mediated N-arylation followed by cyclization with CDI. Further ef-
forts toward employment of this method in library production will
be published in due course.
10. Golberg, I. Ber. Dtsch. Chem. Ges. 1907, 40, 4541.
11. (a) George, T. G.; Endeshaw, M. M.; Morgan, R. E.; Mahasenan, K. V.; Delfin, D.
A.; Mukherjee, M. S.; Yakovich, A. J.; Fotie, J.; Li, C.; Werbovetz, K. A. Bioorg.
Med. Chem. Lett 2007, 15, 6071–6079; (b) Zhu, L.; Li, G.; Luo, L.; Guo, P.; Lan, J.;
You, J. J. Org. Chem. 2009, 74, 2200–2202; (c) Feng, E.; Huang, H.; Zhou, Y.; Ye,
D.; Jiang, H.; Liu, H. J. Org. Chem. 2009, 74, 2846–2849; (d) Stieter, E. R.;
Bhayana, B.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 31, 78–88.
12. (a) Klapars, A.; Abtilla, J. C.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2001,
123, 7727; (b) Hartwig, J. F. Synlett 2006, 1283; (c) Ley, S. V.; Thomas, A. W.
Angew. Chem. Int. Ed. 2003, 42, 5400.
13. (a) Boverie, S.; Antoine, M.-H.; Somers, F.; Becker, B.; Sebille, S.; Ouedraogo, R.;
Counerotte, S.; Pirotte, B.; Lebrun, P.; Tullio, P. J. Med. Chem. 2005, 48, 3492–
3503; (b) Khazi, I. A.; Jung, Y.-S. Lett. Org. Chem. 2007, 4, 423–428.
14. (a) Lai, G.; Gum, R. J.; Daly, M.; Fry, E. H.; Hutchins, C.; Abad-Zapatero, C.; von
Geldern, T. W. Bioorg. Med. Chem. Lett. 2006, 16, 1807–1810; (b) Freeman, H. S.;
Butler, J. R.; Freedman, L. D. J. Org. Chem. 1978, 43, 4975–4978; (c) Bacon, R. G.
R.; Rennison, S. G. J. Chem. Soc. 1969, 312; (d) Wu, Y.-J.; He, H.; L’Heureux, A.
Tetrahedron Lett. 2004, 44, 4217–4218; (e) Kim, J. K.; Lee, Y.; Lee, J.; Do, Y.;
Chang, S. J. Org. Chem. 2008, 73, 9454–9457.
Acknowledgments
This publication was made possible by the Pilot-Scale Libraries
Program (P41 GM076302), the National Institutes of General Med-
ical Sciences (KU Chemical Methodologies and Library Develop-
ment Center of Excellence P50 GM069663) and by Grant Number
P20 RR015563 from the National Center for Research Resources,
a component of the National Institutes of Health, and the State of
Kansas. Its contents are solely the responsibility of the authors
and do not necessarily represent the official view of the NCRR or
NIH.
15. While final yields obtained with DMSO, using DMF gave results within 5%
experimental error. However it was found that under microwave conditions at
150 °C,
a small amount of by-product was formed from the addition of
dimethylamine into the 4-F position of the benzene ring in a SNAr mechanism.
It is proposed that a small amount of dimethylamine is produced from the
decomposition of DMF under these conditions and hence DMSO is a better
solvent for such substrates.
Supplementary data
Supplementary data associated with this article Letter can be
16. General procedure for the N-arylation of
a-bromobenzenesulfonamides: Into a
microwave reaction vial was added sulfonamide (0.17 mmol, 1 equiv), CuI
(0.017 mmol. 0.1 equiv), 1,10-phenanthroline (0.034 mmol, 0.2 equiv), Cs2CO3
(0.34 mmol, 2 equiv), dry DMSO or DMF (0.5 M), and amine (0.2 mmol,
1.2 equiv). The reaction was heated in the microwave (Biotage initiator,
was purified by flash chromatography [hexane/EtOAc, 8:2] to afford the
desired product as a solid. Table 2, entry 8. FTIR (neat): 3400, 1579, 1301, 1149,
547 cmÀ1; mp 178–181 °C: 1H NMR (400 MHz, CDCl3) d 7.73 (dd, J = 8.5, 6.6 Hz,
1H), 6.42 (ddd, J = 13.5, 9.7, 2.0 Hz, 2H), 6.19 (s, 1H), 5.98–5.83 (m, 1H), 5.67
(qt, J = 15.0, 7.5 Hz, 1H), 5.25 (dd, J = 19.5, 13.8 Hz, 2H), 5.12 (dd, J = 25.7,
13.7 Hz, 2H), 4.67 (t, J = 5.6 Hz, 1H), 3.88–3.74 (m, 2H), 3.52 (t, J = 5.8 Hz, 2H);
13C NMR (126 MHz, CDCl3) d 167.8, 165.8, 147.9 (d, JC–F = 13.1 Hz), 133.2, 132.7,
117.8, 116.9, 103.5, 103.3, 99.6, 99.4, 46.1; HRMS calcd for C12H16FN2O2S
(M+H)+ 271.0917; found 271.0923.
References and notes
1. (a) Fustero, S.; Jiméez, D.; Sánchez-Roselló, M.; del Pozo, C. J. Am. Chem. Soc.
2007, 129, 6700–6701; (b) Bi, H.-P.; Liu, X.-Y.; Gou, F.-R.; Guo, L.-N.; Duan, X.-
H.; Shu, X.-Z.; Liang, Y.-M. Angew. Chem., Int. Ed. 2007, 46, 7068–7071; (c) Zeng,
Y.; Reddy, D. S.; Hirt, E.; Aubé, J. Org. Lett. 2004, 6, 4993–4995; (d) Kirschbaum,
S.; Waldmann, H. Tetrahedron Lett. 1997, 38, 2829–2832.
2. For the use of a-halo arylsulfonamides in synthesis of sultams see: (a) Grigg, R.;
York, M. Tetrahedron Lett. 2000, 41, 7255–7258; (b) Evans, P.; McCabe, T.;
Morgan, B. S.; Reau, S. Org. Lett. 2005, 7, 44–46; (c) Vasudevan, A.; Tseng, P.-S.;
Djuric, S. W. Tetrahedron Lett. 2006, 47, 8591–8593; (d) Paquette, L. A.; Dura, R.;
Fosnaugh, N.; Stephanian, M. J. Org. Chem. 2006, 71, 8445–8483; For radical
cyclization: (f) Bressy, C.; Menant, C.; Piva, O. Synlett 2005, 577–582; For alkyne
6-endo cyclizations: (g) Barange, D. K.; Nishad, T. C.; Swamy, K.; Bandameedi,
V.; Kumar, D.; Bukkapattanam, R. S.; Vyas, K.; Pal, M. J. Org. Chem. 2007, 72,
8547–8550.
3. (a) Zhou, A.; Hanson, P. R. Org. Lett. 2008, 10, 2951–2954; (b) Jeon, K. O.;
Rayabarapu, D.; Rolfe, A.; Volp, K.; Omar, I.; Hanson, P. R. Tetrahedron 2009,
4992–5000.
4. (a) Zhou, A.; Rayabarapu, K. D.; Hanson, P. R. Org. Lett. 2009, 531–534; (b) Rolfe,
A.; Young, K.; Hanson, P. R. Eur. J. Org. Chem. 2008, 5254–5262; (c) Rolfe, A.;
Young, K.; Volp, K. A.; Schoenen, F.; Neuenswander, B.; Lushington, G. H.;
Hanson, P. R. J. Comb. Chem. 2009, 11, 732–738; (d) Rayabarapu, D. K.; Zhou, A.;
Jeon, K. O.; Samarakoon, T.; Rolfe, A.; Siddiqui, H.; Hanson, P. R. Tetrahedron
2009, 65, 3180–3188. and references cited therein.
5. (a) McReynolds, M. D.; Dougherty, J. M.; Hanson, P. R. Chem. Rev. 2004, 104,
2239–2258; (b) Jiménez-Hopkins, M.; Hanson, P. R. Org. Lett. 2008, 10, 2951–
2954. and references cited therein.
6. Wales, J. K.; Krees, S. V.; Grant, A. M.; Vikroa, J. K.; Wolff, F. W. J. Pharm. Exp.
Ther. 1968, 164, 421–432.
7. (a) Buckheit, W. R.; Fliaka-Boltz, V.; Decker, D. W.; Roberson, L. J.; Pyle, C. A.;
White, L. E.; Bowden, B. J.; McMahon, J. B.; Boyd, M. R.; Bader, J. P.; Nickell, D.
G.; Barth, H.; Antonucci, T. K. Antiviral Res. 1994, 25, 43–56; (b) Arranz, E. M.;
Diaz, J. A.; Ingate, S. T.; Witvrouw, M.; Pannecouque, C.; Balzarini, J.; Clercq, E.
D.; Vega, S. Bioorg. Med. Chem. 1999, 7, 2811–2822.
8. Combrink, K. D.; Gulgeze, H. B.; Thuring, J. W.; Yu, K.-L.; Civiello, R. L.; Zhang, Y.;
Pearce, B. C.; Yin, Z.; Langley, D. R.; Kadow, K. F.; Cianci, C. W.; Li, Z.; Clarke, J.;
Genovesi, E. V.; Medina, I.; Lamb, L.; Yang, Z.; Zadjura, L.; Krystal, M.; Meanwell,
N. A. Bioorg. Med. Chem. Lett. 2007, 17, 4784–4790.
17. General procedure for the synthesis of benzothiadiazin-3-one-1,1-dioxides via CDI
cyclization: To a round-bottomed flask was added sulfonamide (0.17 mmol,
1 equiv), dry DMF (0.2 M), Et3N (0.34 mmol, 2 equiv) and CDI (0.69 mmol,
4 equiv). The reaction mixture was heated at 100 °C for 6 h, cooled to rt and
concentrated under reduced pressure. The crude oil was diluted in CH2Cl2,
washed with 1 M HCl (aq, 5 mL), water (5 mL), and dried (MgSO4). Subsequent
filtration and concentration yielded a crude oil which was purified by flash
chromatography [hexane/EtOAc, 7:3] to afford the desired product as clear oil.
(Table 3, entry 3). FTIR (neat): 3400, 1575, 1310, 1149 cmÀ1
;
1H NMR
(500 MHz, CDCl3) d 7.92–7.83 (m, 1H), 7.03–6.94 (m, 2H), 6.04–5.88 (m, 2H),
5.39–5.30 (m, 2H), 5.29–5.19 (m, 2H), 4.69–4.59 (m, 2H), 4.52–4.46 (m, 2H);
13C NMR (126 MHz, CDCl3) d 166.7, 164.6, 150.2, 138.8 (dd, JC–F = 10.8 Hz),
131.6, 130.7, 125.3, 119.2, 118.0, 111.1, 104.7, 104.4, 48.5, 44.8; HRMS calcd for
C13H13FN2O2S (M+H)+ 297.0709; found 297.0712.
18. General one-pot procedure for the synthesis of benzothiadiazin-3-one-1,1-
dioxides: Into a microwave reaction vial (0.5–2.0 ml) was added sulfonamide
(0.17 mmol, 1 equiv), CuI (0.017 mmol. 0.1 equiv), 1,10-phenanthroline
(0.034 mmol, 0.2 equiv), Cs2CO3 (0.34 mmol, 2 equiv), dry solvent (0.5 M),
and amine (0.2 mmol, 1.2 equiv). The reaction was heated in the microwave
(Biotage initiator, www.biotage.com) at 150 °C for 11 min. After such time Et3N
(0.34 mmol, 2 equiv) and CDI (0.69 mmol, 4 equiv) was added directly to the
microwave vial. The reaction mixture was heated at 150 °C for 11 min, cooled
to rt and concentrated under reduced pressure. The crude oil was diluted in
CH2Cl2, washed with 1 M HCl (aq, 5 mL), water (5 mL) and dried (MgSO4).
Subsequent filtration and concentration yielded a crude oil, which was purified
by flash chromatography [hexane/EtOAc, 7:3] to afford the desired product.