C O M M U N I C A T I O N S
Table 2. Enantioselective Hydrophosphonylation of Ketimines 1e
and 1j-u Using Hydroquinine or Hydroquinidine
factor in the activation of phosphites. Therefore, the nitrogen in
cinchona alkaloids as a Brønsted base would activate the nucleo-
philicity of sodium phosphite by coordination with sodium ion. On
the other hand, protection of the hydroxyl group in hydroquinine
also did not give a good result (Table 1, entry 18). This result
implies that hydrogen bonding between the cinchona alkaloid
hydroxyl group and the ketimine plays a key role in exerting
enantioselectivity. Therefore, cinchona alkaloids act as dual-
activating organocatalysts. From the above considerations, Figure
1 shows a proposed transition state for the enantioselective
hydrophosphonylation using hydroquinine.
entry
1
R1
R2
cat.
product
yield (%)
ee (%)
1
2
3
4
5
6
7
8
1e
1j
1k
1l
1m
1n
1o
1p
1q
1r
1s
Ph
p-tolyl
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Et
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
B
B
B
B
B
B
B
B
B
B
B
(S)-2e
(S)-3
(S)-4
(S)-5
(S)-6
(S)-7
(S)-8
(S)-9
(S)-10
(S)-11
(S)-12
(S)-13
(S)-14
(R)-2e
(R)-3
(R)-4
(R)-5
(R)-6
(R)-7
(R)-8
(R)-9
(R)-10
(R)-11
(R)-12
(R)-13
(R)-14
99
97
99
99
98
99
99
99
99
98
97
96
93
99
90
91
99
99
99
99
98
91
97
86
92
86
97
96
97
94
93
97
94
94
96
55
75
97
89
92
92
94
95
92
88
90
91
93
52
80
92
82
p-MeOC6H4
p-ClC6H4
p-BrC6H4
p-FC6H4
m-ClC6H4
m-BrC6H4
2-naphthyl
PhCH2CH2
cyclohexyl
Ph
9
10
11
12
13
14
15
16
17a
18a
19a
1t
1u
1e
1j
1k
1l
1m
1n
1o
1p
1q
1r
1s
1-indanone
Ph
p-tolyl
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Me
Et
Figure 1. Proposed transition state for the hydrophosphonylation of 1e
using hydroquinine.
p-MeOC6H4
p-ClC6H4
p-BrC6H4
p-FC6H4
m-ClC6H4
m-BrC6H4
2-naphthyl
PhCH2CH2
cyclohexyl
Ph
In conclusion, we have provided the first catalytic enantioselec-
tive hydrophosphonylations of ketimines using commercially avail-
able cinchona alkaloids. This approach provides direct access to
both enantiomers of optically active quaternary R-amino phosphonic
acids with satisfactory yields and enantioselectivities.
20a b
,
21a b
,
22
23
24
25
26
Acknowledgment. This work was supported by the Tatematsu
Foundation.
1t
1u
1-indanone
a Using 10 mol % catalyst. b The reaction was carried out at -40 °C.
Supporting Information Available: Experimental procedures and
characterization data, including the X-ray crystal structure of (S)-5
(CIF). This material is available free of charge via the Internet at http://
pubs.acs.org.
cyclic ketimine 1u derived from 1-indanone afforded 14 in high
yield with good enantioselectivity (entry 13). Furthermore, the
reaction using hydroquinidine instead of hydroquinine afforded the
opposite enantiomers of products 3-14 with high enantioselectivity
(entries 14-26). Since most of the products were crystalline,
enantiomerically pure products were easily to obtain by single
recrystallization. For example, recrystallization of 92% ee (R)-3
from hexane/ethyl acetate afforded enantiomerically pure (R)-3
(entry 15). To the best of our knowledge, these results are the first
examples of catalytic enantioselective C-heteroatom bond forma-
tion involving ketimines.
References
(1) For reviews of the biological activity of R-amino phosphonic acids, see: (a)
Hiratake, J.; Oda, J. Biosci., Biotechnol., Biochem. 1997, 61, 211. (b)
Aminophosphonic and Aminophosphinic Acids; Kukhar, V. P., Hudson, H. R.,
Eds.; John Wiley & Sons: New York, 2000.
(2) (a) Allen, J. G.; Atherton, F. R.; Hall, M. J.; Hassal, C. H.; Holmes, S. W.;
Lambert, R. W.; Nisbet, L. J.; Ringrose, P. S. Nature 1978, 272, 56. (b)
Atherton, F. R.; Hassall, C. H.; Lambert, R. W. J. Med. Chem. 1986, 29,
29.
(3) (a) Stowasser, B.; Budt, K.-H.; Jian-Qi, L.; Peyman, A.; Ruppert, D.
Tetrahedron Lett. 1992, 33, 6625. (b) Alonso, E.; Solis, A.; del Pozo, C.
Synlett 2000, 698.
The 2,4,6-trimethylbenzenesulfonyl group could be removed
from optically active (S)-2e on treatment with methanesulfonic acid
in trifluoroacetic acid (TFA)/anisole at room temperature to give
chiral R-amino phosphonate (S)-15 (Scheme 1).
(4) For selected examples, see: (a) Hirschmann, R.; Smith, A. B., III; Taylor,
C. M.; Benkovic, P. A.; Taylor, S. D.; Yager, K. M.; Sprengeler, P. A.;
Benkovic, S. J. Science 1994, 265, 234. (b) Smith, W. W.; Bartlett, P. A.
J. Am. Chem. Soc. 1998, 120, 4622, and references therein.
(5) For reviews of enantioselective hydrophosphonylation of imines, see: (a)
Merino, P.; Marque´s-Lo´pez, E.; Herrera, R. P. AdV. Synth. Catal. 2008, 350,
1195. (b) Ordo´n˜ez, M.; Rojas-Cabrera, H.; Cativiela, C. Tetrahedron 2009,
65, 17, and references therein.
Scheme 1. Desulfonylation of (S)-2e
(6) For reviews of enantioselective reactions of ketimines, see: (a) Shibasaki,
M.; Kanai, M. Chem. ReV. 2008, 108, 2853. (b) Bella, M.; Gasperi, T.
Synthesis 2009, 1583, and references therein.
(7) For diastereoselective addition of lithiated phosphonates to chiral N-
sulfinylketimines, see: (a) Davis, F. A.; Lee, S.; Yan, H.; Titus, D. D. Org.
Lett. 2001, 3, 1757. (b) Chen, Q.; Yuan, C. Synthesis 2007, 3779.
(8) Nakamura, S.; Nakashima, H.; Yamamura, A.; Shibata, N.; Toru, T. AdV.
Synth. Catal. 2008, 350, 1209. We also reported the enantioselective reaction
of N-sulfonylimines. See: (a) Nakamura, S.; Nakashima, H.; Sugimoto, H.;
Sano, H.; Hattori, M.; Shibata, N.; Toru, T. Chem.sEur. J. 2008, 14, 2145.
(b) Nakamura, S.; Sakurai, Y.; Nakashima, H.; Shibata, N.; Toru, T. Synlett
2009, 1639.
The enantioselective hydrophosphonylation of 1e with diphenyl
phosphite gave products in good yield with good enantioselectivity,
although the reaction with TBSOP(OPh)2 did not afford product
2e (Table 1, entry 21). Furthermore, the reaction without a base
also did not afford a product (Table 1, entry 10). These results
show that the formation of the sodium salt of phosphite is a key
(9) The acidic proton in diethyl phosphite could not be removed by Na2CO3.
JA908940E
9
J. AM. CHEM. SOC. VOL. 131, NO. 51, 2009 18241