Iso-seco-tanapartholides
[6] a) Iso-seco-tanapartholide was assigned structure 1, see: S. Hu-
neck, C. Zdero, F. Bohlmann, Phytochemistry 1986, 25, 883–
889; b) J. A. Marco, J. F. Sanz-Cereva, E. Manglano, F. San-
cenon, A. Rustaiyan, M. Kardar, Phytochemistry 1993, 34,
1561–1564 {[α]2D0(iso-seco-tanapartholide) = +3.3 (c = 6.1, sol-
vent not mentioned)}; c) S. Oksuz, Phytochemistry 1990, 29,
887–890; d) R. X. Tan, Z. J. Jia, J. Jakupovic, F. Bohlmann, S.
Huneck, Phytochemistry 1991, 30, 3033–3035; e) R. X. Tan, J.
Jakupovic, F. Bohlmann, Z. J. Jia, S. Huneck, Phytochemistry
1991, 30, 583–587.
[7] F. Bohlmann, C. Zdero, Phytochemistry 1982, 21, 2543–2549.
[8] See Supporting Information for further details.
[9] It was also confirmed that the active fraction did not target the
reporter protein, firefly luciferase, by using an in vitro assay
(data not shown).
action by both 1 and 2, in a manner that is independent of
the C3 stereochemistry.
Conclusions
The bioactivity-guided fractionation of an extract from
Tanacetum parthenium by using an NF-κB-dependent lucif-
erase reporter gene assay is described. The purified extract
was shown to contain two natural products from the iso-
seco-tanapartholide family. Synthesis of authentic samples
of these two natural products by using an efficient oxidative
cleavage reaction clarified the structures of the compounds
isolated from a series of plants. This resulted in the isolation
and synthesis of the natural product epi-iso-seco-tanapar-
tholide (2) as well as iso-seco-tanapartholide (1). Biological
[10] L. M. Bedoya, M. J. Abad, P. Bermejo, Curr. Signal Transduc-
tion Ther. 2008, 3, 82–87.
[11] As expected, this led to the C3 epimer of 7 as the major prod-
uct.
studies on synthetic material confirmed that these com- [12] D. H. R. Barton, P. De Mayo, M. Shafiq, J. Chem. Soc. 1957,
929–935.
pounds act late in the NF-κB signaling pathway.
[13] P. Metz, S. Bertels, R. Fröhlich, J. Am. Chem. Soc. 1993, 115,
12595–12596.
Supporting Information (see footnote on the first page of this arti-
cle): Details of the Strathclyde natural-product extract collection,
screening results, bioactivity-guided purification, structural assign-
ment, experimental procedures, characterisation data for all new
compounds, comparison studies of synthetic 1 and 2 with pre-
viously reported natural products and material isolated from T.
parthenium and Achillea.
[14] CCDC-734445 (for 15), -734446 (for 16), -734447 (for 17), and
734449 (for S1)[8] contain the supplementary crystallographic
data for this paper. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.
[15] P. A. Grieco, M. Meyers, R. S. Finkelhor, J. Org. Chem. 1974,
39, 119–120.
[16] R. Criegee, E. Hoger, G. Huber, P. Kruck, F. Marktscheffel, H.
Schellenberger, Justus Liebigs Ann. Chem. 1956, 599, 81–125.
It cannot be ruled out that lead tetraacetate rapidly cleaves 7
and 25 without forming a cyclic ester intermediate and that the
speed of the reaction results from release of steric congestion
on cleavage of the C1–C10 bond. We thank a reviewer for rais-
ing this possibility.
Acknowledgments
We would like to thank The Scottish Funding Council, SULSA
and The Royal Society (NJW) for funding and Professor Mike Fer-
guson and Drs. C. Botting, A. McCarthy, and S. Fujihara for ad-
vice.
[17] In this reaction a compound tentatively assigned as the C3 oxo
derivative of 1 was formed.
[18] [α]2D0(1) = +2.9 (c = 0.8, CHCl3); [α]2D0(2) = –6.5 (c = 0.2
CHCl3).
[1] a) R. E. Dolle, B. Le Bourdonnec, A. J. Goodman, G. A. Mo-
rales, C. J. Thomas, W. Zhang, J. Comb. Chem. 2008, 10, 753–
802 and references cited therein; b) S. L. Schreiber, Bioorg.
Med. Chem. 1998, 6, 1127–1152.
[19] This sample was kindly provided by Professor Todorova. For
example, see M. Todorova, E. Mustakerova, E. Tsankova,
Dokl. Bulg. Akad. Nauk. 2005, 58, 25–32 and references cited
therein.
[2] a) A. L. Harvey, Drug Discovery Today 2008, 13, 894–901; b)
T. W. Corson, C. M. Crews, Cell 2007, 130, 769–774; c) P. [20] For previous reports on the biological activity of this family of
Bremner, M. Heinrich, J. Pharm. Pharmacol. 2002, 54, 453–
472; d) K. Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2009,
48, 3224–3242.
natural products, see: a) H. Z. Jin, J. H. Lee, D. Lee, Y. S.
Hong, Y. H. Kim, J. J. Lee, Phytochemistry 2004, 65, 2247–
2253; b) H. Ahn, J. Y. Kim, H. J. Lee, Y. K. Kim, J.-H. Ryu,
Arch. Pharm. Res. 2003, 26, 301–305.
[3] M. Karin, F. R. Greten, Nat. Rev. Immunol. 2005, 5, 749–759.
[4] a) J. R. Matthews, R. T. Hay, Int. J. Biochem. Cell Biol. 1995,
27, 865–879; b) M. S. Rodriguez, J. Thompson, R. T. Hay, C. J.
Dargemont, J. Biol. Chem. 1999, 274, 9108–9115; c) J. R. Mat-
thews, W. Kaszubska, G. Turcatti, T. N. Wells, R. T. Hay, Nu-
cleic Acids Res. 1993, 21, 1727–1734.
[5] M. J. Hewlett, M. J. Begley, W. A. Groenewegen, S. Heptinstall,
D. W. Knight, J. May, U. Salan, D. Toplis, J. Chem. Soc. Perkin
Trans. 1 1996, 16, 1979–1986 and references cited therein.
[21] A. J. Garcia-Pineres, V. Castro, G. Mora, T. J. Schmidt, E.
Strunck, H. L. Pahl, I. Merfort, J. Biol. Chem. 2001, 276,
39713–39720 and references cited therein.
[22] P. Rungler, V. Castro, G. Mora, N. Goren, W. Vichnewski,
H. L. Pahl, I. Merfort, T. J. Schmidt, Bioorg. Med. Chem. 1999,
7, 2343–2352.
Received: September 6, 2009
Published Online: October 7, 2009
Eur. J. Org. Chem. 2009, 5711–5715
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
5715