Flexible Ligation Behaviour of a Tridentate P/N/N Ligand
2425; d) A. Del Zotto, W. Baratta, M. Ballico, E. Herdtweek,
P. Rigo, Organometallics 2007, 26, 5636–5642; e) M. L. Clarke,
M. B. Díaz-Valenzuela, A. M. Z. Slawin, Organometallics 2007,
26, 16–19; f) J. Zhang, M. Gandelman, L. J. W. Shimon, D.
Milstein, Dalton Trans. 2007, 107–113; g) C. E. Anderson,
D. C. Apperley, A. S. Batsanov, P. W. Dyer, J. A. K. Howard,
Dalton Trans. 2006, 4134; h) J. Hou, W.-H. Sun, S. Zhang, H.
Ma, Y. Deng, X. Lu, Organometallics 2006, 25, 236–244; i) L.
Boubekeur, S. Ulmer, L. Ricard, N. Mézailles, P. Le Floch, Or-
ganometallics 2006, 25, 315–317.
a) S. R. Bayly, A. R. Cowley, J. R. Dilworth, C. V. Ward, Dal-
ton Trans. 2008, 2190–2198; b) P. Pelagatti, A. Bacchi, M. Ba-
lordi, S. Bolaño, F. Calbiani, L. Elviri, L. Gonsalvi, C. Pelizzi,
M. Peruzzini, D. Rogolino, Eur. J. Inorg. Chem. 2006, 2422–
2436; c) O. M. Ní Dhubhghaill, J. Lennon, M. G. B. Drew, Dal-
ton Trans. 2005, 3213–3220; d) S. R. Korupoju, R.-Y. Lai, Y.-
H. Liu, S.-M. Peng, S.-T. Liu, Inorg. Chim. Acta 2005, 358,
3003–3008; e) N. Nimitsiriwat, E. L. Marshall, V. C. Gibson,
M. R. J. Elsegood, S. H. Dale, J. Am. Chem. Soc. 2004, 126,
13598–13599; f) W.-Q. Hu, X.-L. Sun, C. Wang, Y. Gao, Y.
Tang, L.-P. Shi, W. Xia, J. Sun, H.-L. Dai, X.-Q. Li, X.-L. Yao,
X.-R. Wang, Organometallics 2004, 23, 1684–1688; g) P.-Y. Shi,
Y.-H. Liu, S.-M. Peng, S.-T. Liu, Organometallics 2002, 21,
3203–3207; h) M. Ahmad, S. D. Perera, B. L. Shaw, M. Thorn-
ton-Pett, J. Chem. Soc., Dalton Trans. 2002, 1954–1962; i) P.
Pelagatti, A. Bacchi, C. Bobbio, M. Carcelli, M. Costa, C. Pel-
izzi, C. Vivorio, Organometallics 2000, 19, 5440–5446; j) P.
Bhattacharyya, J. Parr, A. M. Z. Slawin, J. Chem. Soc., Dalton
Trans. 1998, 3609–3614; k) E. K. van den Beuken, N. Veldman,
W. J. J. Smeets, A. L. Spek, B. L. Feringa, Organometallics
1998, 17, 636–644.
direct methods (Patterson synthesis for 10 and 11) and refined on
F2 values for all unique data by full-matrix least-squares.[41] Table 5
and Table 6 give further details. All non-hydrogen atoms were re-
fined anisotropically. For 14 the C(11) Ͼ C(16) ring is common to
both disorder components and there are two possible conforma-
tions of the linkage between this ring and N(2): 56.0(11)% of the
time via C(9), O(3), C(10) and 44.0(11)% of the time via C(9X),
O(3X), C(10X). For compound 4·Et2O a molecule of badly disor-
derd Et2O was modelled by the Platon Squeeze procedure.[42] The
X-ray structures of 11 (Figure S1) and 12 (Figure S2), with full
atom numbering schemes, are given in the Supporting Information.
[14]
CCDC-706564 (for 2·HH), -706565 (for 2a), -706566 (for 3),
-706567 (for 4·Et2O), -706568 (for 8), -706569 (for 10), -706570 (for
11), -706571 (for 12), -706572 (for 13·Et2O) and -706573 (for 14)
contain the complete set of X-ray crystallographic structural data.
These can be obtained free of charge from The Cambridge Crystal-
lographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
Supporting Information (see also the footnote on the first page of
this article): Four figures showing additional crystal structures,
packing plots, and full atom numbering.
Acknowledgments
We should like to thank the Engineering and Physical Sciences Re-
search Council (EPSRC) X-ray Service at Southampton University
for collecting the data set for compounds 3 and 8, Johnson Matthey
for the generous loan of precious metal salts and the EPSRC Mass
Spectrometry Service Centre at Swansea. We also acknowledge the
Engineering and Physical Sciences Research Council (EPSRC) for
partial funding (A. J. L.).
[15]
[16]
a) T. Kniess, C. Fernandes, I. Santos, W. Kraus, H. Spies, Inorg.
Chim. Acta 2003, 348, 237–241; b) J. D. G. Correia, A. Domin-
gos, I. Santos, H. Spies, J. Chem. Soc., Dalton Trans. 2001,
2245–2250.
a) C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 2008,
47, 8661–8664; b) L.-C. Liang, P.-S. Chien, P.-Y. Lee, Organo-
metallics 2008, 27, 3082–3093; c) D. Adhikari, F. Basuli, H.
Fan, J. C. Huffman, M. Pink, D. J. Mindiola, Inorg. Chem.
2008, 47, 4439–4441; d) J. I. van der Vlugt, E. A. Pidko, D.
Vogt, M. Lutz, A. L. Spek, A. Meetsma, Inorg. Chem. 2008,
47, 4442–4444; e) D. Benito-Garagorri, J. Wiedermann, M.
Pollak, K. Mereiter, K. Kirchner, Organometallics 2007, 26,
217–222; f) C. M. Fafard, C.-H. Chen, B. M. Foxman, O. V.
Ozerov, Chem. Commun. 2007, 4465–4467; g) A. R. Fout, F.
Basuli, H. Fan, J. Tomaszewski, J. C. Huffman, M.-H. Baik,
D. J. Mindiola, Angew. Chem. Int. Ed. 2006, 45, 3291–3295; h)
E. Ben-Ari, G. Leitus, L. J. W. Shimon, D. Milstein, J. Am.
Chem. Soc. 2006, 128, 15390–15391; i) D. S. McGuiness, D. B.
Brown, R. P. Tooze, F. M. Hess, J. T. Dixon, A. M. Z. Slawin,
Organometallics 2006, 25, 3605–3610; j) D. Benito-Garagorri,
E. Becker, J. Wiedermann, W. Lackner, M. Pollak, K. Mereiter,
J. Kisala, K. Kirchner, Organometallics 2006, 25, 1900–1913;
k) B. C. Bailey, H. Fan, J. C. Huffman, M.-H. Baik, D. J. Min-
diola, J. Am. Chem. Soc. 2006, 128, 6798–6799; l) S. M. Kloek,
D. M. Heinekey, K. I. Goldberg, Organometallics 2006, 25,
3007–3011; m) M. Porchia, F. Tisato, F. Refosco, C. Bolzati,
M. Cavazza-Ceccato, G. Bandoli, A. Dolmella, Inorg. Chem.
2005, 44, 4766–4776; n) L. Fan, B. M. Foxman, O. V. Ozerov,
Organometallics 2004, 23, 326–328; o) M. S. Rahman, P. D.
Prince, J. W. Steed, K. K. Hii, Organometallics 2002, 21, 4927–
4933.
[1] S. Sen, P. Talukder, S. K. Dey, S. Mitra, G. Rosair, D. L.
Hughes, G. P. A. Yap, G. Pilet, V. Gramlich, T. Matsushita,
Dalton Trans. 2006, 1758–1767.
[2] S. Akine, A. Akimoto, T. Shiga, H. Oshio, T. Nabeshima, In-
org. Chem. 2008, 47, 875–885.
[3] S. Nag, P. Gupta, R. J. Butcher, S. Bhattacharya, Inorg. Chem.
2004, 43, 4814–4816.
[4] J. E. Reed, A. Arola Arnal, S. Neidle, R. Vilar, J. Am. Chem.
Soc. 2006, 128, 5992–5993.
[5] M. E. Germain, M. J. Knapp, J. Am. Chem. Soc. 2008, 130,
5422–5423.
[6] Y.-C. Chou, S.-F. Huang, R. Koner, G.-H. Lee, Y. Wang, S.
Mohanta, H.-H. Wei, Inorg. Chem. 2004, 43, 2759–2761.
[7] Q.-Z. Yang, L.-Z. Wu, H. Zhang, B. Chen, Z.-X. Wu, L.-P.
Zhang, C.-H. Tung, Inorg. Chem. 2004, 43, 5195–5197.
[8] C. S. Consorti, G. Ebeling, F. Rodembusch, V. Stefani, P. R.
Livotto, F. Rominger, F. H. Quina, C. Yihwa, J. Dupont, Inorg.
Chem. 2004, 43, 530–536.
[9] H. Jude, J. A. Krause Bauer, W. B. Connick, Inorg. Chem. 2004,
43, 725–733.
[10] a) M. L. Grachan, M. T. Tidge, E. N. Jacobsen, Angew. Chem.
Int. Ed. 2008, 47, 1469–1472; b) J. Lewin´ski, P. Horeglad, M.
Dranka, I. Justyniak, Inorg. Chem. 2004, 43, 5789–5791.
[11] A. D. Getty, K. I. Goldberg, Organometallics 2001, 20, 2545–
2551.
[12] a) T. Hara, T. Yamagata, K. Mashima, Y. Kataoka, Organome-
tallics 2007, 26, 110–118; b) J.-F. Gong, Y.-H. Zhang, M.-P.
Song, C. Xu, Organometallics 2007, 26, 6487–6492; c) Y. Ka-
taoka, K. Shizuma, M. Imanishi, T. Yamagata, K. Tani, J. Or-
ganomet. Chem. 2004, 689, 3–7.
[13] a) F.-B. Han, Y.-L. Zhang, X.-L. Sun, B.-G. Li, Y.-H. Guo, Y.
Tang, Organometallics 2008, 27, 1924–1928; b) J. A. Fuentes,
M. L. Clarke, A. M. Z. Slawin, New J. Chem. 2008, 32, 689–
693; c) Z.-X. Wang, L. Wang, Chem. Commun. 2007, 2423–
[17]
[18]
S. E. Durran, M. R. J. Elsegood, M. B. Smith, New J. Chem.
2002, 26, 1402–1408.
For selected recent examples: a) V. Pandarus, D. Zargarian,
Chem. Commun. 2007, 978–980; b) R. B. Bedford, M. Betham,
J. P. H. Charmant, M. F. Haddow, A. G. Orpen, L. T. Pilarski,
S. J. Coles, M. B. Hursthouse, Organometallics 2007, 26, 6346–
6353; c) L. Ma, R. A. Woloszynek, W. Chen, T. Ren, J. D. Pro-
tasiewicz, Organometallics 2006, 25, 3301–3304.
Eur. J. Inorg. Chem. 2009, 1068–1078
© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
1077