18
Z.-W. Wang et al. / Inorganica Chimica Acta 363 (2010) 15–19
1.5
1.0
0.5
0.0
solution at room temperature, but display strong luminescence at
1.5
1.0
0.5
0.0
77 K in dichloromethane. The emission energies at 77 K in dichlo-
romethane appears to follow the same trend as those in solid state
with the kmax at 605, 628 and 643 nm for 1, 2 and 3, respectively.
4. Conclusions
In this work, we have synthesized and structurally character-
ized three new copper(I) complexes with tricyclohexylphosphine
and different diimine ligands. X-ray structure shows that the cop-
per(I) atom adopts three- or four-coordinated geometry according
to the diimine ligand. The three-coordinated 1 can change into
[Cu(phen)(PCy3)2]+ in chloromethane solution by addition excess
amount of PCy3, while 3 leads to [Cu(PCy3)2]BF4 and CNN-OMe.
All the three complexes display yellow 3MLCT emissions in solid
state or 77 K in solution.
300
400
500
Wavelength/nm
300
400
Wavelength/nm
500
600
Fig. 5. UV–Vis spectral of 1 (0.2 mM) in dichloromethane solution upon addition of
0, 0.2, 0.4 and 1.0 mM. The insert shows the absorption spectra of 3 (0.2 mM) in
dichloromethane solution upon addition of 0, 0.2, 0.6 and 1.0 mM.
Supplementary material
CCDC 724743, 724744 and 724745 contain the supplementary
crystallographic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre
Acknowledgements
1
3
2
This work was supported by the Bureau of Education of Jiangxi
Province (GJJ09074) and the program for innovative research team
of Nanchang University. We are also grateful to financial support
from Nanchang University for Youth teachers.
References
450
500
550
600
650
700
750
Wavelength/nm
[1] D.R. McMillin, K.M. McNett, Chem. Rev. 98 (1998) 1201.
[2] M.T. Miller, P.K. Gantzel, T.B. Karpishin, J. Am. Chem. Soc. 121 (1999) 4292.
[3] D.V. Scaltrito, D.W. Thompson, J.A. O’Callaghan, G.J. Meyer, Coord. Chem. Rev.
208 (2000) 243.
Fig. 6. Room temperature emission spectra of 1–3 measured in solid. (kex
=
355 nm).
[4] N. Armaroli, Chem. Soc. Rev. 30 (2001) 113.
[5] R.M. Williams, L.D. Cola, F. Hartl, J.J. Lagref, J.M. Planeix, A.D. Cian, M.W.
Hosseini, Coord. Chem. Rev. 230 (2002) 253.
[6] D. Felder, J.M. Nierengarten, F. Barigelletti, B. Ventura, N. Armaroli, J. Am.
Chem. Soc. 123 (2001) 6291.
[7] R.A. Rader, D. McMillin, M.T. Buckner, T.G. Matthews, D.J. Casadonte, R.K.
Lengel, S.B. Whittaker, L.M. Darmon, F.E. Lytle, J. Am. Chem. Soc. 103 (1981)
5906.
½CuðphenÞðPCy3Þꢄþ þ PCy3 ꢀ ½CuðphenÞðPCy3Þ ꢄþ
ð1Þ
ð2Þ
2
½CuðCNN-OMeÞðPCy3Þꢄþ þ PCy3 ꢀ ½CuðPCy3Þ ꢄþ þ CNN-OMe
2
The absorption changes of 3 upon gradual titration with PCy3
are different from those of 1. As the PCy3 concentration increase,
the band at 327 nm gradually decreases and then vanishes, while
band at 274 nm gradually increases. Since the absorption after
adding excess amount of PCy3 are very similar to that of the free
ligand CNN-OMe, we deduce that ligand redistribution reactions
as shown in Eq. (2) may happen in solution. Indeed, when we
add excess amount of PCy3 to 3, the yellow color disappears, and
colorless green luminescence crystals of [Cu(PCy3)2]BF4 [15b] and
blue luminescence crystals of CNN-OMe are formed by slow diffu-
sion diethyl ether into the dichloromethane solution. The forma-
tion of four-coordinated species for 1 while not for 3 in solution
may be due to the steric hindrance of the pendant aromatic rings
in CNN-OMe ligand, and the crystal lattice energy of 1 may lead
to the dissociation of [Cu(phen)(PCy3)2]+ in solid state.
Upon excitation at 370 nm, complexes 1–3 exhibit intense pho-
toluminescence with kmax at 558, 564 and 582 nm in the solid state
at room temperature, respectively (Fig. 6). Since the emission ener-
gies are comparable to those of some reported mixed-ligand cop-
per(I) complexes containing diimine and diphosphine ligands
[13–14], the yellow emissions are assigned to the 3MLCT state.
The three complexes do not display any detectable emission in
[8] J.R. Kirchhoff, D.R. McMillin, W.R. Robinson, D.R. Powell, A.T. McKenzie, S.
Chen, Inorg. Chem. 24 (1985) 3928.
[9] L.M. Engelhardt, C. Pakawatchai, A.H. White, J. Chem. Soc., Dalton Trans. (1985)
125.
[10] (a) D.G. Cuttell, S.M. Kuang, P.E. Fanwick, D.R. McMillin, R.A. Walton, J. Am.
Chem. Soc. 124 (2002) 6;
(b) S.M. Kuang, D.G. Cuttell, D.R. McMillin, P.E. Fanwick, R.A. Walton, Inorg.
Chem. 41 (2002) 3313.
[11] (a) Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Mater. 16
(2004) 432;
(b) Q. Zhang, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Funct.
Mater. 16 (2006) 1203;
(c) Q. Zhang, J. Ding, Y. Cheng, L. Wang, Z. Xie, X. Jing, F. Wang, Adv. Funct.
Mater. 17 (2007) 2983.
[12] (a) W.L. Jia, T. McCormick, Y. Tao, J.P. Lu, S. Wang, Inorg. Chem. 44 (2005) 5706;
(b) T. McCormick, W.L. Jia, S. Wang, Inorg. Chem. 45 (2006) 147.
[13] L. Yang, J.K. Feng, A.M. Ren, M. Zhang, Y.G. Ma, X.D. Liu, Eur. J. Inorg. Chem.
(2005) 1867.
[14] K. Saito, T. Tsukuda, T. Tsubomura, Bull. Chem. Soc. Jpn. 79 (2006) 437.
[15] (a) C.M. Che, Z. Mao, V.M. Miskowski, M.C. Tse, C.K. Chan, K.K. Cheung, D.L.
Phikips, K.H. Leung, Angew. Chem., Int. Ed. Engl. 39 (2000) 4084;
(b) Z. Mao, H.Y. Chao, C.M. Che, W.F. Fu, K.K. Cheung, N.Y. Zhu, Chem. Eur. J. 9
(2003) 2885;
(c) W.F. Fu, X. Gan, C.M. Che, Q.Y. Cao, Z.Y. Zhou, N.Y. Zhu, Chem. Eur. J. 10
(2004) 2228.
[16] G.A. Bowmaker, S.E. Boyd, J.V. Hanna, R.D. Hart, P.C. Healy, B.W. Skelton, A.H.
White, J. Chem. Soc., Dalton Trans. (2002) 2722.
[17] G.J. Kubas, B. Monzyk, A.L. Crumbliss, Inorg. Synth. 28 (1990) 68.