Article
Journal of Medicinal Chemistry, 2010, Vol. 53, No. 8 3181
was added 1 N NaOH aqueous solution (18 mL), and the
mixture was heated at 70 °C for 3 h. The mixture was cooled
to room temperature and concentrated. The residue was treated
with water and acidified to pH 3-4 by addition of 1 N HCl. The
resulting solid was collected by filtration, washed with water,
and dried in air to give 45 as an off-white solid (1.65 g, 94%
yield). MS (ESI): m/z 487 [M þ H].
(7) Parsons, D. W.; Wang, T. L.; Samuels, Y.; Bardelli, A.; Cummins,
J. M.; DeLong, L.; Silliman, N.; Ptak, J.; Szabo, S.; Willson, J. K.;
Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Lengauer, C.;
Velculescu, V. E. Colorectal cancer: mutations in a signaling
pathway. Nature 2005, 436, 792.
(8) Cully, M.; You, H.; Levine, A. J.; Mak, T. W. Beyond PTEN
mutations: the PI3K pathway as an integrator of multiple inputs
during tumorigenesis. Nat. Rev. Cancer 2006, 6, 184–192.
(9) Salmena, L.; Carracedo, A.; Pandolfi, P. P. Tenets of PTEN tumor
suppression. Cell 2008, 133, 403–414.
N-[2-(Dimethylamino)ethyl]-4-({[4-(7-ethyl-4-morpholin-4-yl-
7H-pyrrolo[2,3-d ]pyrimidin-2-yl)phenyl]carbamoyl}amino)benz-
amide (50). Compound 50 was prepared from 45 to give an off-
white solid (54% yield), according to the procedure described
for 46, using N,N-dimethylethylenediamine. 1H NMR (DMSO-
d6, 400 MHz) δ 1.40 (t, 3H, J=7.3 Hz), 2.17 (s, 6H), 2.39 (t, 2H,
J=6.8 Hz), 3.33 (m, 2H), 3.77 (t, 4H, J=4.8 Hz), 3.94 (t, 4H, J=
4.8 Hz), 4.27 (q, 2H, J=7.3 Hz), 6.66 (d, 1H, J=3.8 Hz), 7.33 (d,
1H, J=3.8 Hz), 7.53 (d, 2H, J=8.6 Hz), 7.56 (d, 2H, J=8.6 Hz),
7.79 (d, 2H, J=8.6 Hz), 8.23 (t, 1H, J=5.5 Hz), 8.34 (d, 2H, J=
8.6 Hz), 8.98 (br, 2H). MS (ESI): m/z 557 [M þ H]. HRMS calcd
for C30H36N8O3 [M þ H] 557.2983, obsd 557.2983. HPLC
purity 98.6%.
(10) Sulis, M. L.; Parsons, R. PTEN: from pathology to biology. Trends
Cell Biol. 2003, 13, 478–483.
(11) Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S. I.;
Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; Bigner, S. H.;
Giovanella, B. C.; Ittmann, M.; Tycko, B.; Hibshoosh, H.; Wigler,
M. H.; Parsons, R. PTEN, a putative protein tyrosine phosphatase
gene mutated in human brain, breast, and prostate cancer. Science
1997, 275, 1943–1947.
(12) Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi,
T.; Okada, M.; Ohta, M.; Tsukamoto, S.; Parker, P.; Workman, P.;
Waterfield, M. Synthesis and biological evaluation of 4-morpho-
lino-2-phenylquinazolines and related derivatives as novel PI3
kinase p110R inhibitors. Bioorg. Med. Chem. 2006, 14, 6847–6858.
(13) Schultz, R. M.; Merriman, R. L.; Andis, S. L.; Bonjouklian, R.;
Grindey, G. B.; Rutherford, P. G.; Gallegos, A.; Massey, K.;
Powis, G. In vitro and in vivo antitumor activity of the phospha-
tidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res. 1995,
15, 1135–1139.
(14) Vlahos, C. J.; Matter, W. F.; Hui, K. Y.; Brown, R. F. A specific
inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-
phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 1994,
269, 5241–5248.
(15) Hennessy, B. T.; Smith, D. L.; Ram, P. T.; Lu, Y.; Mills, G. B.
Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat.
Rev. Drug Discovery 2005, 4, 988–1004.
1-[4-(7-Ethyl-4-morpholin-4-yl-7H-pyrrolo[2,3-d ]pyrimidin-2-
yl)phenyl]-3-{4-[(4-methylpiperazin-1-yl)carbonyl]phenyl}urea
(51). Compound 51 was prepared from 45 to give an off-white
solid (35% yield), according to the procedure described for 46,
1
using 1-methylpiperazine. H NMR (DMSO-d6, 400 MHz) δ
1.40 (t, 3H, J=7.1 Hz), 2.20 (s, 3H), 2.31 (br, 4H), 3.49 (br, 4H),
3.77 (t, 4H, J=5.0 Hz), 3.94 (t, 4H, J=5.0 Hz), 4.27 (q, 2H, J=
7.1 Hz), 6.66 (d, 1H, J=3.8 Hz), 7.32 (d, 1H, J=3.8 Hz), 7.34 (d,
2H, J=8.8 Hz), 7.53 (d, 2H, J=8.8 Hz), 7.56 (d, 2H, J=8.8 Hz),
8.34 (d, 2H, J=8.8 Hz), 8.93 (s, 1H), 8.94 (s, 1H). MS (ESI): m/z
569 [M þ H]. HRMS calcd for C31H36N8O3 [M þ H] 569.2983,
obsd 569.2983. HPLC purity 99.6%.
(16) Drees, B. E.; Mills, G. B.; Rommel, C.; Prestwich, G. D. Thera-
peutic potential of phosphoinositide 3-kinase inhibitors. Expert
Opin. Ther. Pat. 2004, 14, 703–732.
1-[4-(7-Ethyl-4-morpholin-4-yl-7H-pyrrolo[2,3-d ]pyrimidin-2-
yl)phenyl]-3-[4-(piperazin-1-ylcarbonyl)phenyl]urea (52). Com-
pound 52 was prepared from 45 to give an off-white solid
(46% yield), according to the procedure described for 46, using
piperazine. 1H NMR (DMSO-d6, 400 MHz) δ 1.40 (t, 3H, J=7.1
Hz), 2.68 (br, 4H), 3.41 (br, 4H), 3.78 (t, 4H, J=5.0 Hz), 3.94 (t, 4H,
J=5.0 Hz), 4.27 (q, 2H, J=7.1 Hz), 6.66 (d, 1H, J=3.5 Hz), 7.32 (d,
1H, J=3.5 Hz), 7.33 (d, 2H, J=8.6 Hz), 7.53 (d, 2H, J=8.6 Hz),
7.56 (d, 2H, J=8.6 Hz), 8.34 (d, 2H, J=8.6 Hz), 8.98 (s, 1H), 9.01 (s,
1H). MS (ESI): m/z 555 [M þ H]. HRMS calcd for C30H34N8O3
[M þ H] 555.2827, obsd 555.2830. HPLC purity 95.2%.
(17) Norman, B. H.; Shih, C; Toth, J. E.; Ray, J. E.; Dodge, J. A.;
Johnson, D. W.; Rutherford, P. G.; Schultz, R. M.; Worzalla, J. F.;
Vlahos, C. J . Studies on the mechanism of phosphatidylinositol 3-
kinase inhibition by wortmannin and related analogs. J. Med.
Chem. 1996, 39, 1106–1111.
(18) Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi,
T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.; Raynaud,
F. I.; Workman, P.; Waterfield, M. D.; Parker, P. Synthesis and
biological evaluation of pyrido[30,20:4,5]furo[3,2-d]pyrimidine
derivatives as novel PI3 kinase p110R inhibitors. Bioorg. Med.
Chem. Lett. 2007, 17, 2438–2442.
(19) Yaguchi, S.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.;
Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T. Antitumor
activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibi-
tor. J. Natl. Cancer Inst. 2006, 98, 545–556.
(20) Kong, D.; Yamori, T. ZSTK474 is an ATP-competitive inhibitor of
class I phosphatidylinositol 3 kinase isoforms. Cancer Sci. 2007, 98,
1638–1642.
(21) Folkes, A. J.; Ahmadi, K.; Alderton, W. K.; Alix, S.; Baker, S. J.;
Box, G.; Chuckowree, I. S.; Clarke, P. A.; Depledge, P.; Eccles,
S. A.; Friedman, L. S.; Hayes, A.; Hancox, T. C.; Kugendradas, A.;
Lensun, L.; Moore, P.; Olivero, A. G.; Pang, J.; Patel, S.;
Pergl-Wilson, G. H.; Raynaud, F. I.; Robson, A.; Saghir, N.;
Salphati, L.; Sohal, S.; Ultsch, M. H.; Valenti, M.; Wallweber,
H. J.; Wan, N. C.; Wiesmann, C.; Workman, P.; Zhyvoloup, A.;
Zvelebil, M. J.; Shuttleworth, S. J. The identification of 2-(1H-
indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-mor-
pholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent,
selective, orally bioavailable inhibitor of class I PI3 kinase for the
treatment of cancer. J. Med. Chem. 2008, 51, 5522–5532.
(22) Stauffer, F.; Maira, S. M.; Furet, P.; Garcia-Echeverria, C.
Imidazo[4,5-c]quinolines as inhibitors of the PI3K/PKB-pathway.
Bioorg. Med. Chem. Lett. 2008, 18, 1027–1030.
(23) Maira, S.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch,
C.; Brachmann, S.; Chene, P.; De Pover, A.; Schoemaker, K.;
Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.;
Sellers, W.; Garcia-Echeverria, C. Identification and characteriza-
tion of NVP-BEZ235, a new orally available dual phosphatidyli-
nositol 3-kinase/mammalian target of rapamycin inhibitor with
potent in vivo antitumor activity. Mol. Cancer Ther. 2008, 7, 1851–
1863.
Acknowledgment. We thank Wyeth Chemical Technolo-
gies Department for compound identification and the phar-
maceutical profiling results. Wealso thank Dr. Derek Cole for
his helpful suggestions regarding this manuscript.
References
(1) Vivanco, I.; Sawyers, C. L. The phosphatidylinositol 3-kinase-
AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489–501.
(2) Vanhaesebroeck, B.; Leevers, S. J.; Ahmadi, K.; Timms, J.; Katso,
R.; Driscoll, P. C.; Woscholski, R.; Parker, P. J.; Waterfield, M. D.
Synthesis and function of 3-phosphorylated inositol lipids. Annu.
Rev. Biochem. 2001, 70, 535–602.
(3) Vanhaesebroeck, B.; Leevers, S. J.; Panayotou, G.; Waterfield,
M. D. Phosphoinositide 3-kinases: a conserved family of signal
transducers. Trends Biochem. Sci. 1997, 22, 267–272.
(4) Shayesteh, L.; Lu, Y.; Kuo, W. L.; Baldocchi, R.; Godfrey, T.;
Collins, C.; Pinkel, D.; Powell, B.; Mills, G. B.; Gray, J. W.
PIK3CA is implicated as an oncogene in ovarian cancer. Nat.
Genet. 1999, 21, 99–102.
(5) Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo,
S.; Yan, H.; Gazdar, A.; Powell, S. M.; Riggins, G. J.; Willson,
J. K. V.; Markowitz, S.; Kinzler, K. W.; Vogelstein, B.; Velculescu,
V. E. High frequency of mutations of the PIK3CA gene in human
cancers. Science 2004, 304, 554.
(6) Campbell, I. G.; Russell, S. E.; David; Choong, D. Y.; Montgomery,
K. G.; Ciavarella, M. L.; Hooi, C. S.; Cristiano, B. E.; Pearson,
R. B.; Wayne, A.; Phillips, W. A. Mutation of the PIK3CA gene in
ovarian and breast cancer. Cancer Res. 2004, 64, 7678–7681.
(24) Venkatesan, A. M.; Dehnhardt, C. M.; Chen, Z.; Delos Santos, E.;
Santos, O.; Bursavich, M.; Gilbert, A. M.; Ellingboe, J. W.; Ayral-
Kaloustian, S.; Brooijmans, B.; Mallon, R.; Hollander, I.;