of Fig. 3B), which presumably provides an electrostatic-based
driving force component for aggregation. Bis(terpyridine)
electrostatic attraction is estimated to decrease the total energy
by B30 kcal molꢁ1 per stacked pair in the aggregate.
In summary,
a series of carbohydrate-functionalized
mono- and di(terpyridinyl)arenes has been synthesized by urea
glucosidation of the terpyridinyl alkyl amines as well as
characterized. By simply cooling homogeneous solutions of 11,
13, and 21 to 20 1C, self-assembled nanofibers formed; addition
of KCl and Fe(II) destroyed the ordered arrays affording a
colorless solution and new tpy–Fe(II)–tpy complex, respectively.
The authors gratefully thank the National Science Foundation
(DMR-0812337, DMR-0705015) and the Ohio Board of
Regents for financial support.
Notes and references
1 J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
WILEY-VCH, Weinheim, 1995.
2 J.-M. Lehn, Chem. Soc. Rev., 2007, 36, 151.
3 J. L. Atwood and J. W. Steed, Organic Nanostructures,
WILEY-VCH, Weinheim, 2008.
4 G. R. Newkome, G. R. Baker, M. J. Saunders, P. S. Russo,
V. K. Gupta, Z. Yao, J. E. Miller and K. Bouillion, J. Chem.
Soc., Chem. Commun., 1986, 752.
5 G. R. Newkome, G. R. Baker, S. Arai, M. J. Saunders,
P. S. Russo, K. J. Theriot, C. N. Moorefield, L. E. Rogers,
J. E. Miller, T. R. Lieux, M. E. Murray, B. Phillips and
L. Pascal, J. Am. Chem. Soc., 1990, 112, 8458.
6 G. R. Newkome, C. N. Moorefield, G. R. Baker, R. K. Behera,
G. H. Escamilla and M. J. Saunders, Angew. Chem., Int. Ed. Engl.,
1992, 31, 917.
Fig. 3 (A) Space-filling representation of the minimized-energy
structures of carbohydrate-functionalized terpyridines 11, 13, and 21
and (B) a proposed model of self-assembled nanofibers of 13 and a
view of the bis(terpyridine) molecular surface with mapped electron
rich (red) and poor (blue) regions.
low molecular-mass organic gelators.7 In the cases of 11 and
13, the supramolecular structures have regularly repeating
twists (Fig. 2B and D) and diameters ranging from 4 to 100 nm
(most fibers with 15–20 nm diameter). The self-assembled 21
(Fig. 2E) has an observed average diameter ca. 150 nm due
presumably to the packing requirements of a greater molecular
volume. Arrows in Fig. 2F show some merging points from
which the small and primary fibers associate into large fibers.
Molecular modeling (ESIw) of the sugar-functionalized
monoterpyridine 11 and bisterpyridines 13 and 21 revealed that
the three monomers have a similar length (ca. 3 nm; Fig. 3A).
The models of 11 and 13 show that the length contributed by
the terpyridine portion is estimated to be 1 nm and the length of
the aliphatic part to be ca. 2 nm. In the model of 21, the lengths
of linker and branch are about 0.8 nm and 1.5 nm, respectively.
A proposed model for the fibers (Fig. 3B; shown unsolvated)
shows the hydrophobic terpyridines stacked on the interior of
the aggregate surrounded, or wrapped, by the hydrocarbon
linkers and hydrophilic carbohydrates, which are oriented
towards the exterior; this presumably reduces interfacial energy
in a polar environment. Additionally, H-bonding interactions
between the urea groups also facilitate the stacking. This feature
is operative in the nanofibers reported by Meijer et al.,11 as well
as Jung and co-workers.29 The 4 nm diameter of the modeled
structure is consistent with observed TEM diameters of the
primary fibers. Distances measured for a 3601 twist in the fibers
ranged from 100 to 150 nm. This corresponds to a twist angle
between monomers from 1.0 to 1.41, respectively, with a 4 A
distance between terpyridines. Further support for the proposed
structure is given by considering the bis(terpyridine) molecular
surface with the calculated regions of electron density color
coded in red (electron rich) and blue (electron poor) (lower left
7 R. G. Weiss and P. Terech, Molecular Gels-Materials with
Self-Assembled Fibrillar Networks, Springer, Dordrecht, 2006.
8 A. R. Hirst, B. Escuder, J. F. Miravet and D. K. Smith,
Angew. Chem., Int. Ed., 2008, 47, 8002.
9 P. Dastidar, Chem. Soc. Rev., 2008, 37, 2699.
10 A. l. Brizard, R. Oda and I. Huc, Low Molecular Mass Gelator:
Chirality Effects in Self-assembled Fibrillar Networks, Springer,
Berlin/Heidelberg, 2005, p. 167.
11 C. C. Lee, C. Grenier, E. W. Meijer and A. P. H. J. Schenning,
Chem. Soc. Rev., 2009, 38, 671.
12 D. K. Smith, Chem. Soc. Rev., 2009, 38, 684.
13 E. C. Constable, C. E. Housecroft and A. Mahmood, Carbohydr.
Res., 2006, 343, 2567.
14 R. Roy and J. M. Kim, Tetrahedron, 2003, 59, 3881.
15 S. Sakamoto, T. Tamura, T. Furukawa, Y. Komatsu, E. Ohtsuka,
M. Kitamura and H. Inoue, Nucleic Acids Res., 2003, 31, 1416.
16 S. Orlandi, R. Annunziata, M. Benaglia, F. Cozzi and L. Manzoni,
Tetrahedron, 2005, 61, 10048.
17 E. C. Constable and S. Mundwiler, Polyhedron, 1999, 18, 2433.
18 E. C. Constable, R. Frantz, C. E. Housecroft, J. Lacour and
A. Mahmood, Inorg. Chem., 2004, 43, 4817.
19 M. Gottschaldt, D. Koth, D. Muller, I. Klette, S. Rau, H. Gorls,
B. Schafer, R. P. Baum and S. Yano, Chem.–Eur. J., 2007, 13, 10273.
20 B.-S. Kim, D.-J. Hong, J. Ba and M. Lee, J. Am. Chem. Soc., 2005,
127, 16333.
21 Y. Aoyama, T. Kanamori, T. Nakai, T. Sasaki, S. Horiuchi,
S. Sando and T. Niidome, J. Am. Chem. Soc., 2003, 125, 3455.
22 J. D. Hartgerink, E. Beniash and S. I. Stupp, Science, 2001, 294, 1684.
23 Y. b. Lim, K. S. Moon and M. Lee, Chem. Soc. Rev., 2009, 38, 925.
24 K. Hanabusa, T. Hirata, D. Inoue, M. Kimura and H. Shirai,
Colloids Surf., A, 2000, 169, 307.
25 P. Wang, C. N. Moorefield and G. R. Newkome, Org. Lett., 2004,
6, 1197.
26 Y. Ichikawa, Y. Matsukawa, T. Nishiyama and M. Isobe, Eur. J.
Org. Chem., 2004, 586.
27 G. R. Newkome and C. D. Shreiner, Polymer, 2008, 49, 1.
28 J. H. Ryu, D. J. Hong and M. Lee, Chem. Commun., 2008, 1043.
29 E. J. Cho, N. H. Kim, J. K. Kang and J. H. Jung, Chem. Mater.,
2009, 21, 3.
ꢀc
This journal is The Royal Society of Chemistry 2009
6930 | Chem. Commun., 2009, 6928–6930