blue-shifted with respect to those of previously reported
main-group borirene compounds (257–276 nm).6b
In summary, exploiting the ability of compounds 1 and 2 as
convenient sources of the borylene moiety under standard
conditions, we have reported the first successful borylene-
based functionalization of metal–alkynyl complexes by photo-
chemical borylene transfer. Structural and spectroscopic data
of the Pt–borirene complex 4 indicate extensive p-delocalisation
within the boron heterocycle. Studies targeting the transfer of
the borylene unit to alkynyl complexes with different metals
and to metal–alkynyl polymers are currently under way.
This work was supported by DFG and FCI, and carried out
within the GRK 1221.
Notes and references
z Crystal data for 4: C20H41BClNP2PtSi2, Mr = 655.01, colourless
needle, 0.21 ꢂ 0.09 ꢂ 0.09 mm3, monoclinic space group P21/c,
a = 13.670(4), b = 19.510(6), c = 21.795(6) A, b = 92.514(12)1,
Fig. 1 The molecular structure of ClPt(PMe3)2{m-(BNSiMe3)2CQC}Ph
(4) in the solid state.
V = 5807(3) A3, Z = 8, rcalcd = 1.498 g cmꢀ3, m = 5.125 mmꢀ1
,
F(000) = 2608, T = 100(2) K, R1 = 0.0360, wR2 = 0.0912, 14 305
independent reflections [2y r 56.661] and 529 parameters.
orbital comprised of the pz-atomic orbitals of boron and
carbon.6 Consistent with the result from VT 1H NMR spectro-
scopy, a slightly elongated B–N separation of 1.428(7) A (A),
1.421(7) A (B), which matches those of previously reported
aminoborirenes, indicates a weaker p-interaction between the
boron and nitrogen centers. The distance between Pt1, which
is in square-planar arrangement, and the sp2-hybridized C1
(1.974(5) A (A), 1.973(5) A (B)) is slightly elongated in
comparison to that between Pt and the sp-hybridized carbon in
trans,trans-[(Ph3P)2(Cl)Pt–CRC–Pt(PPh3)2(Cl)] (1.958(4) A).12
UV-vis spectra of the Pt–alkynyl precursor 3 and the
borirene 4 were recorded in hexane solution (Fig. 2).w The
optical properties and electronic structures of Pt–alkynyl
complexes have been well studied throughout the literature.13
In comparison, the UV-vis spectra of 3 exhibit similar absorption
bands between 250 and 300 nm, with vibronic contributions
particularly from the CRCPh ligand.13b In contrast, the
spectra of the Pt-substituted borirene 4 display broad, feature-
less absorptions with maxima occurring at higher energies.
Furthermore, most likely due to the organometallic substituent,
the absorption maximum (lmax = 247 nm) of 4 is somewhat
Spectroscopic data for 4: 1H NMR: d = 0.46 (s, 18H, Si(CH3)3),
1.08 (m, 18 H, P(CH3)3), 8.39 (m, 2H, CH-o of C6H5), 7.36 (m, 2H,
CH-m of C6H5), 7.18 (m, 1H, CH-p of C6H5); 13C{1H} NMR:
(C bonded to boron not detected), 3.78 (s, Si(CH3)3), 13.60 (m, P(CH3)3),
129.28 (s, C-i of C6H5), 125.39 (s, CH-p of C6H5), 128.08 (s, CH-p or
CH-m of C6H5), 128.23 (s, CH-p or CH-m of C6H5); 11B{1H} NMR:
d = 32.01(s); 31P{1H} NMR: d = ꢀ16.23 (1JPt,P = 3377 Hz).
1 (a) H. Braunschweig, C. Kollann and U. Englert, Angew. Chem.,
1998, 110, 3355 (Angew. Chem., Int. Ed., 1998, 37, 3179);
(b) B. Blank, H. Braunschweig, M. Colling-Hendelkens,
C. Kollann, K. Radacki, D. Rais, K. Uttinger and G. Whittel,
Chem.–Eur. J., 2007, 13, 4770.
2 (a) H. Braunschweig and M. Colling, J. Organomet. Chem., 2000,
614–615, 18; (b) H. Braunschweig and M. Colling, Eur. J. Inorg.
Chem., 2003, 393; (c) H. Braunschweig, Adv. Organomet. Chem.,
2004, 51, 163; (d) H. Braunschweig and D. Rais, Heteroat. Chem.,
2005, 16, 566; (e) H. Braunschweig, C. Kollann and D. Rais,
Angew. Chem., Int. Ed., 2006, 45, 5254; (f) S. Aldridge and
D. L. Coombs, Coord. Chem. Rev., 2004, 248, 535;
(g) C. E. Anderson, H. Braunschweig and R. D. Dewhurst,
Organometallics, 2008, 27, 6381.
3 (a) P. L. Timms, J. Am. Chem. Soc., 1967, 89, 1629;
(b) P. L. Timms, Acc. Chem. Res., 1973, 6, 118; (c) B. Pachaly
and R. West, Angew. Chem., Int. Ed. Engl., 1984, 23, 454.
4 (a) H. Braunschweig, M. Colling, C. Kollann, B. Neumann and
H.-G. Stammler, Angew. Chem., 2001, 113, 2359 (Angew. Chem.,
Int. Ed., 2001, 40, 2298); (b) H. Braunschweig, M. Colling, C. Hu
and K. Radacki, Angew. Chem., 2003, 115, 215 (Angew. Chem., Int.
Ed., 2003, 42, 205); (c) H. Braunschweig, M. Forster and
K. Radacki, Angew. Chem., 2006, 118, 8036 (Angew. Chem., Int.
Ed., 2006, 45, 2132); (d) H. Braunschweig, M. Forster, K. Radacki,
F. Seeler and G. Whittell, Angew. Chem., 2007, 119, 5304 (Angew.
Chem., Int. Ed., 2007, 46, 5212); (e) H. Braunschweig, M. Forster,
T. Kupfer and F. Seeler, Angew. Chem., 2008, 120, 6070 (Angew.
Chem. Int. Ed., 2008, 47, 5981).
5 H. Braunschweig, R. D. Dewhurst, T. Herbst and K. Radacki,
Angew. Chem., 2008, 120, 6067 (Angew. Chem., Int. Ed., 2008, 47,
5978).
6 (a) H. Braunschweig, T. Herbst, D. Rais and F. Seeler, Angew.
Chem., 2005, 117, 7627 (Angew. Chem., Int. Ed., 2005, 44, 7461);
(b) H. Braunschweig, T. Herbst, D. Rais, S. Ghosh, T. Kupfer,
K. Radacki, A. Crawford, R. Ward, T. Marder, I. Ferna
G. Frenking, J. Am. Chem. Soc., 2009, 131, 8989;
(c) H. Braunschweig, I. Fernandez, G. Frenking, K. Radacki and
´
ndez and
´
F. Seeler, Angew. Chem., 2007, 119, 5307 (Angew. Chem., Int. Ed.,
2007, 46, 5215).
7 (a) M. E. Volpin, Y. D. Koreshkov, V. G. Dulova and
D. N. Kursanov, Tetrahedron, 1962, 18, 107. For INDO calculations,
see: (b) C. U. Pittman, A. Kress, T. B. Patterson, P. Walton and
Fig. 2 UV-visible spectra of compound 3 (gray) and 4 (black) in
hexane.
ꢁc
This journal is The Royal Society of Chemistry 2009
6980 | Chem. Commun., 2009, 6979–6981