7204
M. S. M. Timmer et al. / Tetrahedron Letters 50 (2009) 7199–7204
2007, 72, 9963; (e) Crich, D.; Vinogradova, O. J. Org. Chem. 2007, 72, 6513; (f)
Dudkin, V. Y.; Miller, J. S.; Dudkina, A. S.; Antczak, C.; Scheinberg, D. A.;
Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 13598; (g) Tanaka, H.; Nishiura, Y.;
Takahashi, T. J. Am. Chem. Soc. 2008, 130, 17244; (h) Fraser-Reid, B.; Ray
Chaudhuri, S.; Jayaprakash, K. N.; Lu, J.; Ramamurty, C. V. S. J. Org. Chem. 2008,
73, 9732; (i) Imamura, A.; Ando, H.; Ishida, H.; Kiso, M. J. Org. Chem. 2009, 74,
3009; (j) Cid, M. B.; Alfonso, F.; Martín-Lomas, M. Chem. Eur. J. 2005, 11, 928.
electrophilic aromatic substitution reaction to give the 3-iodo
azulenyl product.26 Subsequent nulceophilic substitution of the io-
dide by thiophenol leads to the 3-phenylthioazulene derivative.27
Given this result, the electrophilicy of the Az-group would also
make it incompatible with pentenyl glycoside donors where NIS
is commonly used as the activator. Removal of the 3-phenylthio-
azulene group can nonetheless be achieved as subjection of disac-
charide 30 to NaOMe in MeOH resulted in the complete
methanolysis of both the Az and acetyl protecting groups.
Azulen-1-yl-oxo-acetyl (Az) is a novel coloured hydroxy-pro-
tecting group for primary and secondary alcohols and is a useful
addition to the arsenal of protecting groups currently available.
The Az-group can be readily introduced and is stable to a variety
of reaction conditions. Importantly, the Az group can be regioselec-
tively incorporated onto the 3-OH position of benzylidene-pro-
tected glucosides and benzylidene-protected galactosides and its
orthogonality has been illustrated by its selective removal in the
presence of various silyl, ether and/or acetate protecting groups.
The Az-group is also amenable to glycosylation reactions with
the commonly used trichloroacetimidate donors. Unfortunately,
removal of the Az-group cannot be used to colorimetrically moni-
tor the reaction progress, however the colour of the Az-group itself
aids in the monitoring of reactions by TLC and in the isolation of
products via column chromatography. Investigation into the use
of the Az-group during the construction of more complex oligosac-
charides is currently underway.
4. For
a review on factors influencing glycosylation reactions, see: Zhu, X.;
Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900.
5. (a) Osborn, H. M. I.; Khan, T. H. Tetrahedron 1999, 55, 1807; (b) Roussel, F.;
Knerr, L.; Grathwihl, M.; Schmidt, R. R. Org. Lett. 2000, 2, 3043; (c) Palmacci, E.
R.; Hewitt, M. C.; Seeberger, P. H. Angew. Chem., Int. Ed. 2001, 40, 4433.
6. (a) Sewald, Norbert; Jakubke, Hans-Dieter Peptides: Chemistry and Biology;
Wiley-VCH: Weinheim, 2002; (b) Atherton, E.; Sheppard, R. C. Solid Phase
Peptide Synthesis: A Practical Approach; IRL Press: Oxford, 1989.
7. Sonveaux, E. Protecting Groups in Oligonucleotide Synthesis. In Protocols for
Oligonucleotide Conjugates, Synthesis and Analytical Techniques; Agrawal, S., Ed.;
Humana Press: Totowa, New Jersey, 1994.
8. Gioeli, C.; Chattopadhyaya, J. B. J. Chem. Soc., Chem. Commun. 1982, 672.
9. (a) Zhuravlev, V. G.; Mazurov, A. A.; Andronati, S. A. Collect. Czech. Chem.
Commun. 1992, 57, 1495; (b) Caton-Williams, J.; Huang, Z. Angew. Chem., Int. Ed.
2008, 120, 1747; (c) Abell, A. D.; Martyn, D. C.; May, B. C. H.; Nabbs, B. K.
Tetrahedron Lett. 2002, 43, 3673; (d) Sekine, M.; Aoyagi, M.; Ushioda, M.;
Ohkubo, A.; Seio, K. J. Org. Chem. 2005, 70, 8400; (e) Leikauf, E.; Köster, H.
Tetrahedron 1995, 51, 5557.
10. Ko, K.-S.; Park, G.; Yu, Y.; Pohl, N. L. Org. Lett. 2008, 10, 5381.
11. Manabe, S.; Ito, Y. J. Am. Chem. Soc. 2002, 124, 12638.
12. (a) Aumüller, I.; Lindhorst, T. K. Eur. J. Org. Chem. 2006, 1103; (b) Dubber, M.;
Patel, A.; Sadalapure, K.; Aumüller, I.; Lindhorst, T. K. Eur. J. Org. Chem. 2006,
5357.
13. (a) Anderson, A. G.; Nelson, J. A.; Tazuma, J. J. J. Am. Chem. Soc. 1953, 75, 4980;
(b) Hafner, K.; Bernhard, C. Angew. Chem. 1957, 69, 533; (c) Kedziorek, M.;
Mayer, P.; Mayr, H. Eur. J. Org. Chem. 2009, 1202.
14. For the reaction of azulene with oxalyl bromide (and the product with
methanol or ethanol), see: (a) Treibs, W. Chem. Ber. 1959, 92, 2152–2163; (b)
Ito, S.; Okujima, T.; Kikuchi, S.; Shoji, T.; Morita, N.; Asao, T.; Ikoma, T.; Tero-
Kubota, S.; Kawakami, J.; Tajiri, A. J. Org. Chem. 2008, 73, 2256–2263.
15. (a) Ziegler, K.; Hafner, K. Angew. Chem. 1955, 67, 301; (b) Hafner, K.; Meinhardt,
K.-P. Org. Synth. 1990, Coll. Vol. 7, 15.
Supplementary data
Supplementary data associated with this article can be found, in
16. Fischer, E. Chem. Ber. 1895, 28, 1167.
17. AzCl (1.1–1.5 equiv) are used with respect to the alcohol.
18. Ohle, H.; Berend, G. Chem. Ber. 1925, 58, 2585.
19. Toepfer, A.; Kinzy, W.; Schmidt, R. R. Liebigs Ann. Chem. 1994, 5, 449.
20. Mukhopadhyay, B.; Field, R. A. Carbohydr. Res. 2003, 338, 2149.
21. Liptak, A.; Jodal, I.; Harangi, J.; Nanasi, P. Acta Chim. Hungarica 1983, 113, 415.
22. (a) Zhu, X.; Kawatkar, S.; Rao, Y.; Boons, G.-J. J. Am. Chem. Soc. 2006, 128, 11948;
(b) Wang, H.; She, J.; Zhang, L.-H.; Ye, X.-S. J. Org. Chem. 2004, 69, 5774; (c)
Jiang, L.; Chan, T.-H. J. Org. Chem. 1998, 63, 6035.
23. (a) Dasgupta, F.; Garegg, P. J. Synthesis-Stuttgart 1994, 11, 1121; (b) Fernandez-
Mayoralas, A.; Marra, A.; Trumtel, M.; Veyrieres, A.; Sinay, P. Carbohydr. Res.
1989, 188, 81; (c) Nicolaou, K. C.; Mitchell, H. J.; Rodriguez, R. M.; Fylaktakidou,
K. C.; Suzuki, H. Angew. Chem., Int. Ed. 1999, 38, 3345.
24. (a) Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19, 731; (b)
Schmidt, R. R.; Michel, J.; Roos, M. Liebigs Ann. Chem. 1984, 1343.
25. Veeneman, G. H.; Van Leeuwen, S. H.; Van Boom, J. H. Tetrahedron Lett. 1990,
31, 1331.
26. See for examples: (a) Ueno, T.; Toda, H.; Yasunami, M.; Yoshifuji, M. Bull. Chem.
Soc. Jpn. 1996, 69, 1645; (b) Thanh, N. C.; Ikai, M.; Kajioka, T.; Fujikawa, H.;
Taga, Y.; Zhang, Y.; Ogawa, S.; Shimada, H.; Miyahara, Y.; Kuroda, S.; Oda, M.
Tetrahedron 2006, 62, 11227.
References and notes
1. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; John
Wiley & Sons: New York, 1999.
2. For some recent examples, see: (a) Vatèle, J.-M. Tetrahedron 2007, 63, 10921–
10929; (b) Bufali, S.; Hölemann, A.; Seeberger, P. H. J. Carbohydr. Res. 2005, 24,
441; (c) Cai, F.; Crich, D. Org. Lett. 2007, 9, 1613; (d) Komba, S.; Kitaoka, M.;
Kasumi, T. Eur. J. Org. Chem. 2005, 5313; (e) Baek, J. Y.; Shin, Y.-S.; Jeon, H. B.;
Kim, K. S. Tetrahedron Lett. 2005, 46, 5143–5147; (f) Yu, H.; Williams, D. L.;
Ensley, H. E. Tetrahedron Lett. 2005, 46, 3417–3421; (g) Chery, F.; Rollin, P.; De
Lucchi, O. D.; Cossu, S. Synthesis 2001, 2, 286; (h) Gum, A. G.; Kappes-Roth, T.;
Waldmann, H. Chem. Eur. J. 2000, 6, 3714; (i) Plante, O. J.; Buchwald, S. L.;
Seeberger, P. H. J. Am. Chem. Soc. 2000, 122, 7148; (j) Kuo, P.-Y.; Chuang, R.-R.;
Yang, D.-Y. Mol. Divers 2009, 13, 253.
3. For recent examples, see: (a) Codée, J. D. C.; Stubba, B.; Schiattarella, M.;
Overkleeft, H. S.; Van Boeckel, C. A. A.; Van Boom, J. H.; Van der Marel, G. A. J.
Am. Chem. Soc. 2005, 127, 3767; (b) Hölemann, A.; Stocker, B. L.; Seeberger, P. H.
J. Org. Chem. 2006, 71, 8071; (c) Liu, X.; Stocker, B. L.; Seeberger, P. H. J. Am.
Chem. Soc. 2006, 128, 3638; (d) Fulse, D. B.; Jeon, H. B.; Kim, K. S. J. Org. Chem.
27. Iodo- and phenylthio-substituted products were formed in a 1:4 ratio.