Communication
ChemComm
3 (a) A. Rodrigues, E. E. Lee and R. A. Batey, Org. Lett., 2010, 12, 263;
alkylation of 3a and 4a with allyl bromide respectively followed
by ring-close metathesis.
¨
(b) C. Li, M. Kahny and B. Breit, Angew. Chem., Int. Ed., 2014,
53, 13784; (c) C. Li and B. Breit, Chem. – Eur. J., 2016, 22, 14663;
(d) X. Zhang, Z.-P. Yang, L. Huang and S.-L. You, Angew. Chem.,
Int. Ed., 2015, 54, 1876.
4 For selected reviews, see: (a) Z. Lu and S. Ma, Angew. Chem., Int. Ed.,
2008, 47, 297; (b) B. M. Trost and M. L. Crawley, Chem. Rev., 2003,
103, 2944.
5 (a) G. Poli, G. Prestat, F. Liron and C. K. Pentier, in Transition Metal
Catalyzed Enantioselective Allylic Substitution in Organic Synthesis, ed.
U. Kazmaier, Springer, Berlin, Heidelberg, 2011, p. 1; (b) C. G. Frost,
J. Howarth and J. M. J. Willianms, Tetrahedron: Asymmetry, 1992,
3, 1122.
6 For selective examples, see: (a) W. Guo, A. Cai, J. Xie and A. W. Kleij,
Angew. Chem., Int. Ed., 2017, 56, 11801; (b) Z.-W. Lai, R.-F. Yang,
K.-Y. Ye, H. Sun and S.-L. You, Beilstein J. Org. Chem., 2014, 10, 1266;
(c) W.-H. Zheng, B.-H. Zheng, Y. Zhang and X.-L. Hou, J. Am. Chem.
Soc., 2007, 129, 7719; (d) S.-L. You, X.-Z. Zhu, Y.-M. Luo, X.-L. Hou
In conclusion, we have developed an efficient method for
the asymmetric synthesis of N-substituted 2-pyridones via a
Pd-catalyzed regio- and enantioselective allylic substitution
of hydroxyl-containing allylic carbonates with 2-pyridones. By
using a palladium complex in situ generated from Pd2(dba)3Á
CHCl3 and phosphoramidite L2 as a ligand, the process allowed
rapid access to N-substituted 2-pyridones with complete
chemo- and regioselectivities and good to high enantioselec-
tivities. The reaction pathway has been rationalized by the
control experiments, and the synthetic utility was demonstrated
by the product derivatization. Further studies on extending the
scope of the hydrogen-bond directed regioselective allylic substi-
tution with other nucleophiles are currently underway, and will be
reported in due course.
´ ˆ
and L.-X. Dai, J. Am. Chem. Soc., 2001, 123, 7472; (e) R. Pretot and
A. Pfaltz, Angew. Chem., Int. Ed., 1998, 37, 325; ( f ) T. Hayashi,
K. Kishi, A. Yamamoto and Y. Ito, Tetrahedron Lett., 1990, 31, 1746.
7 B. M. Trost, R. C. Bunt, R. C. Lemoine and T. L. Calkins, J. Am. Chem.
Soc., 2000, 122, 5976.
8 (a) For review, see: Y.-N. Wang, L.-Q. Lu and W.-J. Xiao, Chem. –
Asian J., 2018, 13, 2183. For selected recent examples, see: (b)
Y.-N. Wang, B.-C. Wang, M.-M. Zhang, X.-W. Gao, T.-R. Li, L.-Q.
Lu and W.-J. Xiao, Org. Lett., 2017, 19, 4097; (c) G.-J. Mei, C.-Y. Bian,
G.-H. Li, S.-L. Xu, W.-Q. Zheng and F. Shi, Org. Lett., 2017, 19, 3222;
This work was supported by the National Natural Science
Foundation of China (21572130, 21871179), and Shanghai Jiao
Tong University. We thank the Instrumental Analysis Center of
Shanghai Jiao Tong University for HRMS analysis.
´
(d) J. Xie, W. Guo, A. Cai, E.-C. Escudero-Adan and A. W. Kleij, Org.
Conflicts of interest
´
´
Lett., 2017, 19, 6391; (e) A. Cai, W. Guo, L. Martınez-Rodrıguez and
A. W. Kleij, J. Am. Chem. Soc., 2016, 138, 14197; ( f ) S. Soriano,
There are no conflicts to declare.
´
´
M. Escudero-Casao, M.-I. Matheu, Y. Dıaz and S. Castillon, Adv.
Synth. Catal., 2016, 358, 4066; (g) X. Wei, D. Liu, Q. An and
W. Zhang, Org. Lett., 2015, 17, 5771; (h) B. M. Trost, M. Osipov
and G. Dong, J. Am. Chem. Soc., 2010, 132, 15807; (i) I. Mangion,
N. Strotman, M. Drahl, J. Imbriglio and E. Guidry, Org. Lett., 2009,
11, 3260; ( j) B. M. Trost, D.-R. Fandrick, T. Brodmann and D. T.
Stiles, Angew. Chem., Int. Ed., 2007, 46, 6125; (k) B. M. Trost and
A. Aponick, J. Am. Chem. Soc., 2006, 128, 3933; (l) G. R. Cook, H. Yu,
S. Sankaranarayanan and P. S. Shanker, J. Am. Chem. Soc., 2003,
125, 5120.
9 (a) H. Xu, S. Khan, H. Li, X. Wu and Y. J. Zhang, Org. Lett., 2019,
21, 217; (b) K. Liu, I. Khan, J. Cheng, Y. J. Hsueh and Y. J. Zhang, ACS
Catal., 2018, 8, 11604; (c) I. Khan, H. Li, X. Wu and Y. J. Zhang, Acta
Chim. Sin., 2018, 76, 877; (d) I. Khan, C. Zhao and Y. J. Zhang, Chem.
Commun., 2018, 54, 4711; (e) L. Yang, A. Khan, R. Zheng, L. Y. Jin
and Y. J. Zhang, Org. Lett., 2015, 17, 6233; ( f ) A. Khan and Y. J.
Zhang, Synlett, 2015, 860; (g) A. Khan, J. Xing, J. Zhao, Y. Kan,
W. Zhang and Y.-J. Zhang, Chem. – Eur. J., 2015, 21, 124; (h) A. Khan,
R. Zheng, Y. Kan, J. Ye, J. Xing and Y. J. Zhang, Angew. Chem., Int.
Ed., 2014, 53, 6442; (i) A. Khan, L. Yang, J. Xu, L. Y. Jin and
Y. J. Zhang, Angew. Chem., Int. Ed., 2014, 53, 11260.
References
1 (a) J. A. Pfefferkorn, J. Lou, M. L. Minich, K. J. Filipski, M. He,
R. Zhou, S. Ahmed, J. Benbow, A.-G. Perez, M. Tu, J. Litchfield,
R. Sharma, K. Metzler, F. Bourbonais, C. Huang, D. A. Beebe and
P. J. Oates, Bioorg. Med. Chem. Lett., 2009, 19, 3252; (b) C. A. Martinez,
D. R. Yazbeck and J. Tao, Tetrahedron, 2004, 60, 764; (c) P. S. Dragovich,
T. J. Prins, R. Zhou, E. L. Brown, F. C. Maldonado, S. A. Fuhrman,
L. S. Zalman, T. Tuntland, C. A. Lee, A. K. Patick, D. A. Matthews,
T. F. Hendrickson, M. B. Kosa, B. Liu, M. R. Batugo, J. P. R. Gleeson,
S. K. Sakata, L. Chen, M. C. Guzman, J. W. Meador III, R. A. Ferre and
S. T. Worland, J. Med. Chem., 2002, 45, 1623; (d) P. S. Dragovinch,
R. Zhou and T. J. Prins, J. Org. Chem., 2002, 67, 746; (e) S. O’Connor and
P. J. Somers, J. Antibiot., 1985, 38, 996; ( f ) J. S. Mynderse,
S. K. Samlaska, D. S. Fukuda, R. H. Du Bus and P. J. Baker,
J. Antibiot., 1985, 38, 1007; (g) H. J. Jessen and K. Gademann, Nat.
Prod. Rep., 2010, 27, 1185; (h) A. M. Prendergast and G. P. McGlacken,
Eur. J. Org. Chem., 2018, 6082; (i) K. Hirano and M. Miura, Chem. Sci.,
2018, 9, 32.
10 (a) A. Khan, S. Khan, I. Khan, C. Zhao, Y. Mao, Y. Chen and
Y. J. Zhang, J. Am. Chem. Soc., 2017, 139, 10741; (b) B. M. Trost,
B. S. Brown, E.-J. McEachern and O. Kuhn, Chem. – Eur. J., 2003,
9, 4451; (c) B. M. Trost, E. J. McEachern and F. D. Toste, J. Am. Chem.
Soc., 1998, 120, 12703.
11 B. L. Feringa, M. Pineschi, L. A. Arnold, R. Imbos and A. de Vries,
Angew. Chem., Int. Ed. Engl., 1997, 36, 2623.
12 H. Zhou, W.-H. Wang, Y. Fu, J.-H. Xie, W.-J. Shi, L.-X. Wang and
Q.-L. Zhou, J. Org. Chem., 2003, 68, 1584.
13 J. P. Schmidt, C. Li and B. Breit, Chem. – Eur. J., 2017, 23, 6534.
2 (a) Y.-Q. Yang, M. M. Bio, K. B. Hansen, M. S. Potter and A. Clausen,
J. Am. Chem. Soc., 2010, 132, 15527; (b) F. G. Fang and S. J. Danishefsky,
Tetrahedron Lett., 1989, 30, 3624; (c) C. A. Martinez, D. R. Yazbeck and
J. Tao, Tetrahedron, 2004, 60, 764; (d) M. L. Minich, I. D. Watson,
K. J. Filipski and J. A. Pfefferkorn, Tetrahedron Lett., 2009, 50, 2096;
(e) E. Verissimo, N. Berry, P. Gibbons, M. L. S. Cristiano, P. J.
Rosenthal, J. Gut, S. A. Ward and P. M. O’Neill, Bioorg. Med. Chem.
Lett., 2008, 18, 4214; ( f ) Y. Yu, C. Zhu, S. Wang, W. Song, Y. Yang and
J. Shi, J. Nat. Prod., 2013, 76, 2233; (g) Z. P. Yang, R. Jiang, C. Zheng and
S. L. You, J. Am. Chem. Soc., 2018, 140, 3114.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 13168--13171 | 13171