pubs.acs.org/joc
fluoresceins, rhodamines, etc., which have a xanthene
Cascade Nucleophilic Addition-Cyclic Michael
Addition of Arynes and Phenols/Anilines Bearing
Ortho r,β-Unsaturated Groups: Facile Synthesis of
9-Functionalized Xanthenes/Acridines
nucleus, exhibit essentiality in labeling proteins,2 riboses,3
and cell processes.4 Some xanthenes are good protein5 or
peptide6 receptor antagonists and potentially useful as anti-
Alzheimer drugs.7 Recently, xanthene derivatives were re-
ferred to photocatalysts in metal-free hydrogenations8 and
ligands in transition metal catalysis.9 The unit of acridines
also frequently shows up in many useful dyes which could
bond to RNA.10 Moreover, acridine derivatives such as
AcrHRs are haptens of catalytic antibody 9D911 and play
particular roles in biocatalysis12 and organic chemistry.13
Acridines are potential drugs due to their trypanocidal
activities.14 It is notable that although substituents at the 9
positions of xanthenes and acridines are essential linkers to
attach biomolecules in these examples, the linking modes
were rather limited. This is probably because of the fact that
the existing strategies to afford 9-functionalized xanthenes
or acridines are rare, most of which often include at least a
Fiedel-Craft cyclization reaction15 to construct the hetero-
cyclic nucleus and subsequent manipulation at the 9 posi-
tions of these compounds.16 So it is still desirable to develop
Xian Huang*,†,‡ and Tiexin Zhang†
†Department of Chemistry, Zhejiang University (Xixi
Campus), Hangzhou 310028, People’s Republic of China and
‡State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy of
Sciences, Shanghai 200032, People’s Republic of China
Received October 29, 2009
(6) Naya, A.; Sagara, Y.; Ohwaki, K.; Saeki, T.; Ichikawa, D.; Iwasawa,
Y.; Noguchi, K.; Ohtake, N. J. Med. Chem. 2001, 44, 1429.
(7) Wischik, C. M.; Edwards, P. C.; Harrington, C. R.; Roth, M.; Klug,
A. Inhibition of τ-τ association. U.S. Patent 6 953 794, 2005.
(8) Lazarides, T.; McCormick, T.; Du, P.; Luo, G.; Lindley, B.;
Eisenberg, R. J. Am. Chem. Soc. 2009, 131, 9192.
(9) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101.
A facile synthesis of xanthenes and acridines based on a
cascade nucleophilic addition-cyclic Michael addition
process of arynes and phenols/anilines substituted with
R,β-unsaturated groups at the ortho positions is de-
scribed. The reaction has also been successfully extended
to the synthesis of 9-spiro-xanthene and acridine deriva-
tives with potential biochemical interest.
(10) (a) Kuzuya, A.; Mizoguchi, R.; Sasayama, T.; Zhou, J.-M.;
Komiyama, M. J. Am. Chem. Soc. 2004, 126, 1430. (b) Carlson, C. B.; Beal,
P. A. J. Am. Chem. Soc. 2002, 124, 8510.
(11) Bensel, N.; Bahr, N.; Reymond, M. T.; Schenkels, C.; Reymond,
J.-L. Helv. Chim. Acta 1999, 82, 44.
(12) Fukuzumi, S.; Tokuda, Y.; Etano, T.; Okamoto, T.; Otera, J. J. Am.
Chem. Soc. 1993, 115, 8960.
(13) (a) Fukuzumi, S.; Okamoto, K.; Tokuda, Y.; Gros, C. P.; Guilard, R.
J. Am. Chem. Soc. 2004, 126, 17059. (b) Fukuzumi, S.; Ohkubo, K.; Tokuda,
Y.; Suenobu, T. J. Am. Chem. Soc. 2000, 122, 4286.
(14) (a) Inhoff, O.; Richards, J. M.; Brıˆet, J. W.; Lowe, G.; Krauth-Siegel,
R. L. J. Med. Chem. 2002, 45, 4524. (b) Bonse, S.; Santelli-Rouvier, C.;
Barbe, J.; Krauth-Siegel, R. L. J. Med. Chem. 1999, 42, 5448. (c) Obexer, W.;
Schmid, C.; Barbe, J.; Galy, J. P.; Brun, R. Trop. Med. Parasitol. 1995, 46, 49.
(15) For construction of xanthene nucleus, see: (a) Ishibashi, H.;
Takagaki, K.; Imada, N.; Ikeda, M. Tetrahedron 1994, 50, 10215. (b)
Ishibashi, H.; Takagaki, K.; Imada, N.; Ikeda, M. Synlett 1994, 1, 49. For
construction of acridine nucleus, see: (c) Baum, J. S.; Condon, M. E.; Shook,
D. A. J. Org. Chem. 1987, 52, 2983.
Xanthenes and acridines are of biochemical and pharma-
ceutical importance.1 A class of fluorescent dyes including
(1) (a) Wolff, M. E., Ed. Burger’s Medicinal Chemistry, 4th ed.; John Wiley
& Sons, Inc.: New York, 1981; Part III, pp 393-407. (b) Smith D. F., Ed.
Handbook of Stereoisomer: Drugs in Psychopharmacology; CRC Press; Boca
Raton, FL, 1984; pp 255-283. (c) Lednicer, D.; Metscher, L. A. Organic
Chemistry of Drug Synthesis; John Wiley & Sons, Inc.: New York, 1977;
pp 859-1067. (d) Birman, V. B.; Chopra, A.; Ogle, C. A. Tetrahedron Lett.
1996, 37, 5073. (e) Ajtai, K.; Ilich, P. J. K.; Ringler, A.; Sedarous, S. S.; Toft, D. J.;
Burghardt, T. P. Biochemistry 1992, 31, 12431.
(16) (a) Nishino, H.; Kamachi, H.; Baba, H.; Kurosawa, K. J. Org. Chem.
ꢁ
1992, 57, 3551. (b) Prashad, M.; Lu, Y.; Repic, O. J. Org. Chem. 2004, 69, 584.
(17) Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211.
(18) Gilchrist, T. L. Supplement C: The Chemistry of Triple Bonded
Functional Groups, Part 1; Patai, S., Rappaport, Z., Eds.; John Wiley &
Sons: New York, 1983.
(2) (a) Okoh, M. P.; Hunter, J. L.; Corrie, J. E. T.; Webb, M. R.
Biochemistry 2006, 45, 14764. (b) Ajtai, K.; Burghardt, T. P. Biochemistry
1995, 34, 15943. (c) Salmon-Chemin, L.; Buisine, E.; Yardley, V.; Kohler, S.;
Debreu, M.-A.; Landry, V.; Sergheraert, C.; Croft, S. L.; Krauth-Siegel,
R. L.; Davioud-Charvet, E. J. Med. Chem. 2001, 44, 548. (d) Blackman,
M. J.; Corrie, J. E. T.; Croney, J. C.; Kelly, G.; Eccleston, J. F.; Jameson,
ꢀ
D. M. Biochemistry 2002, 41, 12244. (e) Ojemyr, L.; Sanden, T.; Widengren,
J.; Brzezinski, P. Biochemistry 2009, 48, 2173.
(3) Conibear, P. B.; Jeffreys, D. S.; Seehra, C. K.; Eaton, R. J.; Bagshaw,
C. R. Biochemistry 1996, 35, 2299.
(4) Gonc-alves, M. S. T. Chem. Rev. 2009, 109, 190.
(5) (a) Sato, N.; Jitsuoka, M.; Shibata, T.; Hirohashi, T.; Nonoshita, K.;
Moriya, M.; Haga, Y.; Sakuraba, A.; Ando, M.; Ohe, T.; Iwaasa, H.;
Gomori, A.; Ishihara, A.; Kanatani, A.; Fukami, T. J. Med. Chem. 2008,
51, 4765. (b) Sato, N.; Takahashi, T.; Shibata, T.; Haga, Y.; Sakuraba, A.;
Hirose, M.; Sato, M.; Nonoshita, K.; Koike, Y.; Kitazawa, H.; Fujino, N.;
Ishii, Y.; Ishihara, A.; Kanatani, A.; Fukami, T. J. Med. Chem. 2003, 46, 666.
(19) For reviews on the cascade/tandem reactions of aryne triggered by
initial nucleophilic additions, see: (a) Sanz, R. Org. Prep. Proced. Int. 2008,
~
40, 215. (b) Rathwell, K.; Brimble, M. A. Synthesis 2007, 643. (c) Pena, D.;
ꢀ
ꢀ
Perez, D.; Guitian, E. Angew. Chem., Int. Ed. 2006, 45, 3579. (d) Dyke, A. M.;
Hester, A. J.; Lloyd-Jones, G. C. Synthesis 2006, 4093. (e) Pellissier, H.;
Santelli, M. Tetrahedron 2003, 59, 701. (f) Biehl, E. R.; Khanapure, S. P. Acc.
Chem. Res. 1989, 22, 275. (g) Kessar, S. V. Acc. Chem. Res. 1978, 11, 283. For
other cascade/tandem reactions triggered by nucleophilic additions, see:
(h) Cant, A. A.; Bertrand, G. H. V.; Henderson, J. L.; Roberts, L.; Greaney,
M. F. Angew. Chem., Int. Ed. 2009, 48, 5199. (i) Allan, K. M.; Hong, B. D.;
Stoltz, B. M. Org. Biomol. Chem. 2009, 7, 4960. (j) Giacometti, R. D.;
Ramtohul, Y. K. Synlett 2009, 2010. (k) Rogness, D. C.; Larock, R. C.
Tetrahedron Lett. 2009, 50, 4003. (l) Gilmore, C. D.; Allan, K. M.; Stoltz,
B. M. J. Am. Chem. Soc. 2008, 130, 1558. (m) Allan, K. M.; Stoltz, B. M.
J. Am. Chem. Soc. 2008, 130, 17270. (n) Soorukram, D.; Qu, T.; Barrett,
A. G. M. Org. Lett. 2008, 10, 3833. (o) Blackburn, T.; Ramtohul, Y. K.
Synlett 2008, 1159.
€
506 J. Org. Chem. 2010, 75, 506–509
Published on Web 12/18/2009
DOI: 10.1021/jo902311a
r
2009 American Chemical Society