Edge Article
Chemical Science
Table 2 Substrate screening
5 (a) C. R. Kennedy, S. Lin and E. N. Jacobsen, Angew. Chem.,
¨
Int. Ed., 2016, 55, 12596–12624; (b) T. M. Brauer, Q. Zhang
Entry
Sa
R3
R4
R5
tb (h)
hc (%)
and K. Tiefenbacher, Angew. Chem., Int. Ed., 2016, 55,
7698–7701.
6 A. Bruckmann, M. A. Pena and C. Bolm, Synlett, 2008, 6, 900–
902.
7 (a) Y. Zhao, Y. Domoto, E. Orentas, C. Beuchat, D. Emery,
J. Mareda, N. Sakai and S. Matile, Angew. Chem., Int. Ed.,
2013, 52, 9940–9943; (b) Y. Cotelle, V. Lebrun, N. Sakai,
T. R. Ward and S. Matile, ACS Cent. Sci., 2016, 2, 388–393.
1
2
3
4
5
6
7
8
23a
23b
23c
23d
23e
23f
Ph
H
Cl
H
Me
H
H
H
H
H
H
H
Br
H
H
H
H
H
NO2
F
H
OMe
Me
24
24
48
48
24
24
24
24
93
89 (98)d
0
9
80 (88)d
98
23g
23h
32 (58)d
97
H
´
8 S. Benz, J. Lopez-Andarias, J. Mareda, N. Sakai and S. Matile,
a
b
Substrates, see Fig. 4. Reaction time with 23a–h (128 mM), 24 (281
c
mM) and 1 mol% 4 in CD2Cl2 at 20 ꢁC. Yield of the reduced product,
Angew. Chem., Int. Ed., 2017, 56, 812–815.
9 P. Wonner, L. Vogel, M. Duser, L. Gomes, F. Kniep,
B. Mallick, D. B. Werz and S. M. Huber, Angew. Chem., Int.
Ed., 2017, 56, 12009–12012.
determined by 1H NMR signal integration against internal standard.
¨
d
Yields in brackets determined aer 48 h reaction time.
10 (a) B. R. Beno, K.-S. Yeung, M. D. Bartberger,
L. D. Pennington and N. A. Meanwell, J. Med. Chem., 2015,
the catalyst, and chalcogen bonding to the acceptors might be
preferred. Catalyst 4 was further conrmed to catalyze the imine
reduction in N-benzylidene-aniline with Hantzsch ester 24
(Scheme S6†). The amine product was obtained in quantitative
yield.
Compared to hydrogen-bonding catalysis, chalcogen-
bonding catalysis is expected to excel with unique direction-
ality, that is highest precision, particularly in hydrophobic
environments. In the new BDS scaffold, this directionality is
maximized. Synthesized from ortho-xylene, the best BDS binds
chloride with low micromolar KD's in THF and enhances the
rate of transfer hydrogenation by ve orders of magnitude.
Increasing activities with deepening s holes are consistent with
powerful chalcogen bonds at work (Table 1, clearest for entries
3–6) and encourage further development of the concept,
particularly with regard to asymmetric catalysis and the inte-
gration into more complex systems.6,16,17b,25
`
58, 4383–4438; (b) A. Bauza, T. J. Mooibroek and
A. Frontera, ChemPhysChem, 2015, 16, 2496–2517; (c)
A. J. Mukherjee, S. Zade, H. B. Singh and R. B. Sunoj,
Chem. Rev., 2010, 110, 4357–4416; (d) H. Huang, L. Yang,
A. Facchetti and T. J. Marks, Chem. Rev., 2017, 117, 10291–
10318.
11 (a) V. B. Birman and X. Li, Org. Lett., 2006, 8, 1351–1354; (b)
S. Fukumoto, T. Nakashima and T. Kawai, Angew. Chem., Int.
Ed., 2011, 50, 1565–1568; (c) C. A. Leverett, V. C. Purohit and
D. Romo, Angew. Chem., Int. Ed., 2010, 49, 9479–9483; (d)
E. R. T. Robinson, D. M. Walden, C. Fallan,
M. D. Greenhalgh, P. H.-Y. Cheong and A. D. Smith, Chem.
Sci., 2016, 7, 6919–6927; (e) S. Menichetti, R. Amorati,
V. Meoni, L. Tofani, G. Caminati and C. Viglianisi, Org.
Lett., 2016, 18, 5464–5467.
12 (a) D. B. Werz, R. Gleiter and F. Rominger, J. Am. Chem. Soc.,
2002, 124, 10638–10639; (b) Y. Yi, S. Fa, W. Cao, L. Zeng,
M. Wang, H. Xu and X. Zhang, Chem. Commun., 2012, 48,
7495–7497; (c) A. Kremer, A. Fermi, N. Biot, J. Wouters and
D. Bonifazi, Chem.–Eur. J., 2016, 22, 5665–5675.
Conflicts of interest
There are no conicts of interest to declare.
¨
13 P. C. Ho, P. Szydlowski, P. J. Sinclair, W. Elder, J. Kubel,
C. Gendy, L. M. Lee, H. Jenkins, J. F. Britten, D. R. Morim
and I. Vargas-Baca, Nat. Commun., 2016, 7, 11299.
14 J. Y. C. Lim, I. Marques, A. L. Thompson, K. E. Christensen,
V. Felix and P. D. Beer, J. Am. Chem. Soc., 2017, 139, 3122–
3133.
Acknowledgements
We thank the NMR and the Mass Spectrometry platforms for
services, and the University of Geneva, the Swiss National
Centre of Competence in Research (NCCR) Molecular Systems
Engineering, the NCCR Chemical Biology and the Swiss NSF for
nancial support.
¨
15 (a) H. Zhao and F. P. Gabbaı, Nat. Chem., 2010, 2, 984–990;
(b) G. E. Garrett, G. L. Gibson, R. N. Straus, D. S. Seferos
and M. S. Taylor, J. Am. Chem. Soc., 2015, 137, 4126–4133.
16 (a) S. Benz, M. Macchione, Q. Verolet, J. Mareda, N. Sakai
and S. Matile, J. Am. Chem. Soc., 2016, 138, 9093–9096; (b)
S. Scheiner, Chem.–Eur. J., 2016, 22, 18850–18858.
17 (a) H.-A. Ho, A. Najari and M. Leclerc, Acc. Chem. Res., 2008,
41, 168–178; (b) M. Dal Molin, Q. Verolet, A. Colom,
R. Letrun, E. Derivery, M. Gonzalez-Gaitan, E. Vauthey,
A. Roux, N. Sakai and S. Matile, J. Am. Chem. Soc., 2015,
137, 568–571.
Notes and references
1 Y. Zhao, Y. Cotelle, N. Sakai and S. Matile, J. Am. Chem. Soc.,
2016, 138, 4270–4277.
2 D. Buleld and S. M. Huber, Chem.–Eur. J., 2016, 22, 14434–
14450.
3 J. P. Wagner and P. R. Schreiner, Angew. Chem., Int. Ed., 2015,
54, 12274–12296.
4 (a) J. Lacour and D. Moraleda, Chem. Commun., 2009, 45, 18 D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno,
7073–7089; (b) M. Mahlau and B. List, Angew. Chem., Int.
Ed., 2013, 52, 518–533.
T. Kumasaka and M. Fujita, Chem, 2016, 1, 91–101.
This journal is © The Royal Society of Chemistry 2017
Chem. Sci.