Journal of the American Chemical Society
COMMUNICATION
(b) Choi, J.; MacArthur, A. H. R.; Brookhart, M.; Goldman, A. S. Chem.
Rev. 2011, 111, 1761.
(17) Recent studies suggest that aerobic oxidation of PdII-hydrides
proceeds via Pd0, as shown in Scheme 2. See: (a) Konnick, M. M.; Stahl,
S. S. J. Am. Chem. Soc. 2008, 130, 5753. (b) Popp, B. V.; Stahl, S. S. Chem.
—Eur. J. 2009, 15, 2915.
(18) Gas update experiments show that the product/O2 stoichio-
metry is 2:1, consistent with Pd-mediated disproportionation of H2O2
under reaction conditions. For previous characterization of Pd-mediated
H2O2 disproportionation under related conditions, see the Supporting
Information for the following reference: Steinhoff, B. A.; Fix, S. R.; Stahl,
S. S. J. Am. Chem. Soc. 2002, 124, 766.
(3) Izawa, Y.; Pun, D.; Stahl, S. S. Science 2011, 333, 209.
(4) Numerous examples ofcyclohexanone dehydrogenation in natural
product synthesis exist. For recent examples, see: (a) Herzon, S. B.; Lu, L.;
Woo, C. M.; Gholap, S. L. J. Am. Chem. Soc. 2011, 133, 7260. (b) Yokoe,
H.; Mitsuhashi, C.; Matsuoka, Y.; Yoshimura, T.; Yoshida, M.; Shishido, K.
J. Am. Chem. Soc. 2011, 133, 8854. (c) Petronijevic, F. R.; Wipf, P. J. Am.
Chem. Soc. 2011, 133, 7704.
(5) For reviews of methods for α,β-dehydrogenation of carbonyl
compounds, see: (a) Buckle, D. R.; Pinto, I. L. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, U.K.,
1991; Vol. 7, pp 119ꢀ149. (b) Larock, R. C. In Comprehensive
Organic Transformations; John Wiley & Sons: New York, 1999; pp
251ꢀ256.
(19) (a) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400. (b) Gligorich,
K. M.; Sigman, M. S. Chem. Commun. 2009, 3854. (c) Chen, X.; Engle,
K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094.
(20) See Supporting Information for further details.
(21) Pd(OAc)2/DMSO catalyst systems for aerobic oxidation reac-
tions were pioneered by the groups of Hiemstra and Larock. For initial
reports, see: (a) Larock, R. C.; Hightower, T. R. J. Org. Chem. 1993,
58, 5298. (b) van Benthem, R. A. T. M.; Hiemstra, H.; Michels, J. J.;
Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 357.
(22) For mechanistic characterization of this catalyst system, see:
Steinhoff, B. A.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 4348.
(23) The other ligands, such as pyridine (entry 13), 2-F-pyridine
(entry 15), and the bis-sulfoxide ligand (entry 19), were selected on the
basis of their utility in other recent Pd-catalyzed oxidation reactions. See,
for example: (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org.
Chem. 1999, 64, 6750. (b) Izawa, Y.; Stahl, S. S. Adv. Synth. Catal. 2010,
352, 3223. (c) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C.
J. Am. Chem. Soc. 2005, 127, 6970.
(6) For Pd-catalyzed dehydrogenation of silyl enol ethers (“Saegusa
reactions”), see: (a) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978,
43, 1011. (b) Larock, R. C.; Hightower, T. R.; Kraus, G. A.; Hahn, P.;
Zheng, D. Tetrahedron Lett. 1995, 36, 2423. (c) Yu, J. Q.; Wu, H. C.;
Corey, E. J. Org. Lett. 2005, 7, 1415.
(7) Common methods include bromination/dehydrobromination
and selenoxide and sulfoxide elimination reactions. See the following
leading references: (a) Miller, B.; Wong, H.-S. Tetrahedron 1972,
28, 2369. (b) Stotter, P. L.; Hill, K. A. J. Org. Chem. 1973, 38, 2576.
(c) Trost, B. M.; Salzmann, T. N.; Hiroi, K. J. Am. Chem. Soc. 1976,
98, 4887. (d) Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. J. Am. Chem.
Soc. 1973, 95, 6137. (e) Reich, H. J. Acc. Chem. Res. 1979, 12, 22.
(8) (a) Nicolaou, K. C.; Zhong, Y. L.; Baran, P. S. J. Am. Chem. Soc.
2000, 122, 7596. (b) Nicolaou, K. C.; Montagnon, T.; Baran, P. S.;
Zhong, Y. L. J. Am. Chem. Soc. 2002, 124, 2245. (c) Nicolaou, K. C.;
Montagnon, T.; Baran, P. S. Angew. Chem., Int. Ed. 2002, 41, 993. (d)
Nicolaou, K. C.; Gray, D. L. F.; Montagnon, T.; Harrison, S. T. Angew.
Chem., Int. Ed. 2002, 41, 996.
(24) Brasche, G.; García-Fortanet, J.; Buchwald, S. L. Org. Lett. 2008,
10, 2207.
(25) McDonald, R. I.; Stahl, S. S. Angew. Chem., Int. Ed. 2010, 49, 5529.
(26) Kinetic fitting was carried with COPASI software: Hoops, S.;
Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.;
Mendes, P.; Kummer, U. Bioinformatics 2006, 22, 3067.
(27) The kinetics of phenol formation (Figure 1B) show that this
reaction is more complicated than a simple sequential A f B f C
process. Specifically, a kinetic “burst” is evident during the first catalytic
turnover that leads to the early rapid conversion of cyclohexanone
to cyclohexenone. The fit in Figure 1B reflects a fit of the data after
this burst phase. Mechanistic studies to elucidate the origin of these
observations are ongoing.
(28) Catalyst decomposition appears to be more rapid when ethyl
acetate is used as the solvent rather than acetic acid. Vigorous agitation of
the reaction mixture to ensure good gasꢀliquid mixing, or the use of
higher O2 pressure, improves the outcome. When using elevated O2
pressures, weemployed a dilute mixture ofO2 in N2 (9%) asthe gassource
to reduce flammability hazards. See Supporting Information for details.
(29) Si, D.; Wang, Y.; Zhou, Y. H.; Guo, Y.; Wang, J.; Zhou, H.; Li, Z. S.;
Fawcett, J. P. Drug Metab. Dispos. 2003, 37, 629.
(9) For a method employing catalytic 2-iodoxybenzene sulfonate
(IBS) in combination stoichiometric Oxone, see: Uyanik, M.; Akakura,
M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251.
(10) (a) Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153.
(b) Buckle, D. R. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone. In Encyclo-
pedia of Reagents for Organic Synthesis; John Wiley & Sons, Inc.: New York,
2010. (c) Bhattacharya, A.; DiMichele, L. M.; Dolling, U. H.; Douglas,
A. W.; Grabowski, E. J. J. J. Am. Chem. Soc. 1988, 110, 3318.
(11) The requirement for large amounts of PdII in these reactions
may arise from inhibition of catalyst reoxidation, arising from enone
coordination to Pd0: Porth, S.; Bats, J. W.; Trauner, D.; Giester, G.;
Mulzer, J. Angew. Chem., Int. Ed. 1999, 38, 2015.
(12) (a) Theissen, R. J. J. Org. Chem. 1971, 36, 752. (b) Muzart, J.;
Pete, J. P. J. Mol. Catal. 1982, 15, 373. (c) Wenzel, T. T. J. Chem. Soc.,
Chem. Commun. 1989, 932. (d) Park, Y. W.; Oh, H. H. Bull. Korean
Chem. Soc. 1997, 18, 1123. (e) Tokunaga, M.; Harada, S.; Iwasawa, T.;
Obora, Y.; Tsuji, Y. Tetrahedron Lett. 2007, 48, 6860.
(30) Cermak, R.; Wolffram, S. Curr. Drug Metab. 2006, 7, 729.
(31) (a) Loudon, J. D.; Razdan, R. K. J. Chem. Soc. 1954, 4299. (b)
Choudary, B. M.; Ranganath, K. V. S.; Yadav, J.; Lakshmi Kantam, M.
Tetrahedron Lett. 2005, 46, 1369.
(32) Kurono, M.; Yamaguchi, T.; Usui, T.; Fukushima, M.; Mizuno,
K.; Matsubara, A. EP0193415 (A2), 1986.
(13) For a recent review of reactions of this type, see: Muzart, J. Eur.
J. Org. Chem. 2010, 3779.
(14) PdII-catalyzed dehydrogenation of β-aryl aldehydes has been
explored recently; however, the current substrate scope is rather limited:
(a) Zhu, J.; Liu, J.; Ma, R. Q.; Xie, H. X.; Li, J.; Jiang, H. L.; Wang, W. Adv.
Synth. Catal. 2009, 351, 1229. (b) Liu, J.; Zhu, J.; Jiang, H. L.; Wang, W.;
Li, J. Chem.—Asian J. 2009, 4, 1712.
(33) Kondo, T.; Oyama, K.-I.; Yoshida, K. Angew. Chem., Int. Ed.
2001, 40, 894.
(34) Nakajima, R.; Ogino, T.; Yokoshima, S.; Fukuyama, T. J. Am.
Chem. Soc. 2010, 132, 1236.
(35) Trost, B. M.; Dong, G.; Vance, J. A. Chem.—Eur. J. 2010,
16, 6265.
(36) Dehydrogenation of substrate 1 has been carried out on a 10-g
scale using a prototype flow reactor donated to UW-Madison by Eli Lilly.
See Supporting Information and the following reference for details: Ye,
X.; Johnson, M. D.; Diao, T.; Yates, M. H.; Stahl, S. S. Green Chem. 2010,
12, 1180.
(15) Direct dehydrogenation of 3,3-dimethylcyclohexanone was
reported recently with 1ꢀ5 mol % of an Ir-pincer catalyst and tBu-
ethylene as the H2 acceptor. Other cyclohexanone substrates lacking
gem-disubstitution undergo stoichiometric deydrogenation, forming an
Ir-phenoxide product. Zhang, X. W.; Wang, D. Y.; Emge, T. J.; Goldman,
A. S. Inorg. Chim. Acta 2011, 369, 253.
(16) The mechanism could proceed via C- and/or O-bound Pd
enolates, although β-hydride elimination is expected to occur from the
C-bound enolate. For the formation of a C-bound Pd-enolate under
relatively similar conditions, see: Fuchita, Y.; Harada, Y. Inorg. Chim.
Acta 1993, 208, 43.
14569
dx.doi.org/10.1021/ja206575j |J. Am. Chem. Soc. 2011, 133, 14566–14569