February 2009
217
Na2SO4 to get L-tyrosinyl-L-prolyl-L-leucyl-L-prolyl-L-phenylalanyl-
L
-
3039—3042 (2002).
isoleucyl-
L
-proline-Opnp or
L
-tyrosinyl-
L
-prolyl-
L
-leucyl-
L
-prolyl-
L
-
phenyl-
8) Clark D. P., Carroll J., Naylor S., Crews P., J. Org. Chem., 63, 8757—
8764 (1998).
9) Bewley C. A., Debitus C., Faulkner J., J. Am. Chem. Soc., 116, 7631—
7636 (1994).
10) Randazzo A., Bifulco G., Giannini C., Bucci M., Debitus C., Cirino
G., Gomez-Paloma L., J. Am. Chem. Soc., 123, 10870—10876 (2001).
11) Rashid M. A., Gustafson K. R., Cartner L. K., Shigematsu N., Pannell
L. K., Boyd M. R., J. Nat. Prod., 64, 117—121 (2001).
12) Zampella A., Valeria D’Auria M., Paloma L. G., Casapullo A., Minale
L., Debitus C., Henin Y., J. Am. Chem. Soc., 118, 6202—6209 (1996).
alanyl-L-isoleucyl-L-proline-Opfp which was dissolved in CHCl3 (25 ml) and
TEA/NMM/pyridine (2.8 ml or 2.21 ml or 1.61 ml, 0.021 mol) was added.
Then, whole contents were kept at 0 °C for 7 d. The reaction mixture was
washed with 10% NaHCO3 (3ꢄ25 ml) and 5% HCl (2ꢄ30 ml) solutions.
The organic layer was dried over anhydrous Na2SO4 and crude cyclized
product was crystallized from CHCl3/n-hexane to get pure cyclic product.
Cyclo (L-Tyrosinyl-L-prolyl-L-leucyl-L-prolyl-L-phenylalanyl-L-isoleucyl-
L-prolyl) (8): Yield: 3.64 g (88%, NMM), 3.1 g (75%, TEA), 2.86 g (69%,
1
C5H5N). mp 225 °C (dec). Rf, 0.68 (CHCl3 : AcOH : H2O, 3 : 2 : 5). H-NMR
(acetone-d6) d: 0.81 (1H, m), 0.94 (3H, t, Jꢅ7.8 Hz), 0.99 (6H, d, 13) Capon R. J., Ford J., Lacey E., Gill J. H., Heiland K., Friedel T., J. Nat.
Jꢅ6.3 Hz), 1.02 (3H, d, Jꢅ5.85 Hz), 1.37 (3H, m), 1.75 (4H, m), 1.83 (2H,
m), 1.89 (2H, t, Jꢅ7.9 Hz), 2.59 (4H, m), 2.67 (6H, m), 3.23 (2H, t,
Jꢅ7.3 Hz), 3.27 (2H, t, Jꢅ7.25 Hz), 3.32 (2H, t, Jꢅ7.3 Hz), 3.87 (1H, t,
Jꢅ6.85 Hz), 3.92 (1H, t, Jꢅ6.9 Hz), 3.96 (1H, t, Jꢅ6.9 Hz), 4.20 (1H, m),
4.40 (1H, m), 5.13 (1H, m), 5.25 (1H, dd, Jꢅ5.9, 4.25 Hz), 5.97 (1H, br s),
6.80 (2H, dd, Jꢅ8.75, 4.2 Hz), 6.92 (2H, dd, Jꢅ8.6, 5.25 Hz), 6.96 (2H, dd,
Jꢅ8.55, 4.9 Hz), 7.02 (1H, t, Jꢅ6.3 Hz), 7.25 (2H, tt, Jꢅ6.8, 4.45 Hz), 9.05
(1H, br s), 9.22 (1H, br s), 9.72 (1H, br s), 9.88 (1H, br s). 13C-NMR d: 10.2,
17.7, 22.1, 21.5, 22.7, 23.1 (2C), 24.4, 26.2, 33.0, 31.5, 34.7, 39.0, 36.8,
43.5, 42.2, 46.4, 48.3, 49.1, 51.7, 52.1, 55.8, 55.2, 56.9, 58.1, 58.5, 128.0,
Prod., 65, 358—363 (2002).
14) Pettit G. R., Tan R., Bioorg. Med. Chem. Lett., 13, 685—688 (2003).
15) Rashid M. A., Gustafson K. R., Boswell J. L., Boyd M. R., J. Nat.
Prod., 63, 956—959 (2000).
16) Hedner E., Sjögren M., Hodzic S., Andersson R., Göransson U., Jons-
son P. R., Bohlin L., J. Nat. Prod., 71, 330—333 (2008).
17) Davis R. A., Mangalindan G. C., Bojo Z. P., Antemano R. R., Ro-
driguez N. O., Concepcion G. P., Samson S. C., de Guzman D., Cruz
L. J., Tasdemir D., Harper M. K., Feng X., Carter G. T., Ireland C. M.,
J. Org. Chem., 69, 4170—4176 (2004).
128.9 (2C), 129.6 (2C), 130.3 (2C), 132.6 (2C), 134.7, 139.1, 154.7, 168.5, 18) Nakao Y., Yoshida S., Matsunaga S., Shindoh N., Terada Y., Nagai K.,
169.3, 169.8, 170.1, 172.5, 173.2, 174.8. IR (KBr) cmꢃ1: 3377, 3128, 3125,
3120, 3059, 3055, 2999, 2995, 2989, 2964, 2927, 2921, 2869, 2847, 2842,
1675, 1671, 1666, 1663, 1646, 1640, 1586, 1582, 1477, 1474, 1538, 1532,
1529, 1382, 1365, 1225, 864, 821, 713, 698. MS m/z: 829, 828 (Mꢁꢁ1),
801, 731, 618, 590, 568, 540, 521, 471, 443, 374, 358, 330, 261, 211, 183,
164, 148, 136, 114, 120, 107, 93, 91, 86, 70, 65, 57, 56, 43, 42, 29, 17, 15.
[a]D ꢃ44.7 (cꢅ0.2, MeOH) (ꢃ44.9 for natural stylisin 1). Anal. Calcd for
C45H61N7O8: C, 65.28; H, 7.43; N, 11.84. Found: C, 65.25; H, 7.43; N,
11.85.
Yamashita J. K., Ganesan A., van Soest R. W., Fusetani N., Angew.
Chem. Int. Ed., 45, 7553—7557 (2006).
19) Murakami Y., Takei M., Shindo K., Kitazume C., Tanaka J., Higa T.,
Fukamachi H., J. Nat. Prod., 65, 259—261 (2002).
20) Nakao Y., Matsunaga S., Fusetani N., Bioorg. Med. Chem., 3, 1115—
1122 (1995).
21) Matsunaga S., Fujiki H., Sakata D., Tetrahedron, 47, 2999—3006
(1991).
22) Kobayashi J., Itagaki F., Shigemori H., Ishibashi M., Takahashi K.,
Ogura M., Nagasawa S., Nakamura T., Hirota H., Ohta T., Nozoe S., J.
Am. Chem. Soc., 113, 7812—7813 (1991).
Acknowledgements We felt obligation of the University Science Instru-
mentation Centre (USIC), Delhi University (DU), India and Regional So- 23) Mohammed R., Peng J., Kelly M., Hamann M. T., J. Nat. Prod., 69,
phisticated Instrumentation Centre (RSIC), Indian Institute of Technology 1739—1744 (2006).
(IIT), Delhi, India for spectral analysis. Also, great thanks to the J.S.S. Col- 24) Dahiya R., Arch. Pharm., 341, 502—509 (2008).
lege of Pharmacy, Ooty (India) for the cytotoxic activity studies.
25) Kobayashi J., Tsuda M., Nakamura T., Mikami Y., Shigemori H.,
Tetrahedron, 49, 2391—2402 (1993).
References
26) Dahiya R., Pathak D., Himaja M., Bhatt S., Acta Pharm., 56, 399—
415 (2006).
27) Wele A., Zhang Y., Dubost L., Pousset J-L., Bodo B., Chem. Pharm.
Bull., 54, 690—692 (2006).
28) Bodanzsky M., Bodanzsky A., “The Practice of Peptide Synthesis,”
Springer, New York, 1984.
29) Kuttan R., Bhanumathy P., Nirmala K., George M. C., Cancer Lett.,
29, 197—202 (1985).
1) Takekawa Y., Matsunaga S., van Soest R. W., Fusetani N., J. Nat.
Prod., 69, 1503—1505 (2006).
2) Zhang H. L., Hua H. M., Pei Y. H., Yao X. S., Chem. Pharm. Bull., 52,
1029—1030 (2004).
3) Aoki S., Naka Y., Itoh T., Furukawa T., Rachmat R., Akiyama S.,
Kobayashi M., Chem. Pharm. Bull., 50, 827—830 (2002).
4) Li H., Matsunaga S., Fusetani N., J. Nat. Prod., 59, 163—166 (1996).
5) Takahashi Y., Yamada M., Kubota T., Fromont J., Kobayashi J., Chem.
Pharm. Bull., 55, 1731—1733 (2007).
30) Bauer A. W., Kirby W. M., Sherris J. C., Turck M., Am. J. Clin.
Pathol., 45, 493—496 (1966).
6) Fusetani N., Matsunaga S., Chem. Rev., 93, 1793—1806 (1993).
7) Okada Y., Matsunaga S., van Soest R. W., Fusetani N., Org. Lett., 4,
31) Dahiya R., Pathak D., Egypt. Pharm. J. (NRC), 5, 189—199 (2006).
32) Pathak D., Dahiya R., J. Sci. Pharm., 4, 125—131 (2003).