D
T.-T. Chen, C. Cai
Letter
Synlett
Table 4 Control Experiments
In summary, a facile approach for copper triflate cata-
lyzed oxidative C–H functionalization of glycine derivatives
with allyltributyltin has been established using molecular
oxygen or TBHP as oxidant catalyzed by a simple copper
salt. Various glycine derivatives bearing electron-donating
groups as well as electron-withdrawing groups underwent
the oxidative allylation reaction smoothly and afforded the
desired homoallylic amines in moderate to good yields.
Entry
Substrate
Conditionsa
Yield (%)b
1
2
3
4
5
6
7
A
B
trace
74c
0
O
H
N
Et
PMP
O
C
D
E
trace
74c
43
O
O
H
N
Me
Et
PMP
N
H
F
Supporting Information
G
11
Supporting information for this article is available online at
N
8
H
84
PMP
O
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
a Conditions A: 1a (0.2 mmol), BHT (2.0 equiv), Cu(OTf)2 (10 mol%) in DCE
(1.0 mL) at 40 °C under O2 (1.0 atm) for 4 h, followed by the addition of 2
(1.2 equiv) for another 6 h; conditions B: 1a (0.2 mmol), Cu(OTf)2 (10
mol%) in DCE (1.0 mL) at 40 °C under O2 (1.0 atm) for 4 h; conditions C: 1a
(0.2 mmol) in DCE (1.0 mL) at 40 °C under O2 (1.0 atm) for 4 h; conditions
D: 1k (0.2 mmol), TBHP (1.0 equiv), BHT (2.0 equiv), Cu(OTf)2 (10 mol%) in
DCE (1.0 mL) at r.t. for 4 h, followed by the addition of 2 (1.2 equiv) for
another 6 h; conditions E: 1k (0.2 mmol), TBHP (1.0 equiv), Cu(OTf)2 (10
mol%) in DCE (1.0 mL) at r.t. for 4 h; conditions F: 1k (0.2 mmol), TBHP (1.0
equiv) in DCE (1.0 mL) at r.t. for 4 h; conditions G: 4a (0.2 mmol), 2 (1.2
equiv) in DCE (1.0 mL) at r.t. for 6 h; conditions H: 4a (0.2 mmol), 2 (1.2
equiv), Cu(OTf)2 (10 mol%) in DCE (1.0 mL) at r.t. for 6 h.
References and Notes
(1) (a) Li, C. J.; Li, Z. Pure Appl. Chem. 2006, 78, 935. (b) Campos, K. R.
Chem. Soc. Rev. 2007, 36, 1069. (c) Li, C. J. Acc. Chem. Res. 2009,
42, 335. (d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011,
111, 1780. (e) Yeung, C. S.; Dong, V. M. Chem. Rev. 2011, 111,
1215. (f) Girard, S. A.; Knauber, T.; Li, C. J. Angew. Chem. Int. Ed.
2014, 53, 74.
(2) (a) Zhao, L.; Li, C. J. Angew. Chem. Int. Ed. 2008, 47, 7075.
(b) Zhang, G.; Zhang, Y.; Wang, R. Angew. Chem. Int. Ed. 2011, 50,
10429. (c) Gao, X. W.; Meng, Q.-Y.; Xiang, M.; Chen, B.; Feng, K.;
Tung, C. H.; Wu, L. Z. Adv. Synth. Catal. 2013, 355, 2158. (d) Gao,
X. W.; Meng, Q. Y.; Li, J. X.; Zhong, J. J.; Lei, T.; Li, X. B.; Tung, C.
H.; Wu, L. Z. ACS Catal. 2015, 5, 2391. (e) Wei, X. H.; Wang, G.
W.; Yang, S. D. Chem. Commun. 2015, 51, 832. (f) Xie, Z.; Jia, J.;
Liu, X.; Liu, L. Adv. Synth. Catal. 2016, 358, 919.
(3) Xie, J.; Huang, Z. Z. Angew. Chem. Int. Ed. 2010, 49, 10181.
(4) Wei, W. T.; Song, R. J.; Li, J. H. Adv. Synth. Catal. 2014, 356, 1703.
(5) (a) Wang, Z. Q.; Hu, M.; Huang, X. C.; Gong, L. B.; Xie, Y. X.; Li, J.
H. J. Org. Chem. 2012, 77, 8705. (b) Zhu, S.; Rueping, M. Chem
Commun. 2012, 48, 11960. (c) Huo, C.; Wang, C.; Wu, M.; Jia, X.;
Xie, H.; Yuan, Y. Adv. Synth. Catal. 2014, 356, 411.
(6) Salman, M.; Zhu, Z. Q.; Huang, Z. Z. Org. Lett. 2016, 18, 1526.
(7) (a) Zhao, L.; Basle, O.; Li, C. J. Proc. Natl. Acad. Sci. U.S.A. 2009,
106, 4106. (b) Xie, Z.; Liu, X.; Liu, L. Org. Lett. 2016, 18, 2982.
(8) Zhu, Z. Q.; Bai, P.; Huang, Z. Z. Org. Lett. 2014, 16, 4881.
(9) (a) Robl, J. A.; Cimarusti, M. P.; Simpkins, L. M.; Brown, B.;
Ryono, D. E.; Bird, J. E.; Asaad, M. M.; Schaeffer, T. R.; Trippodo,
N. C. J. Med. Chem. 1996, 39, 494. (b) Bosque, I.; González-
Gómez, J. C.; Foubelo, F.; Yus, M. J. Org. Chem. 2012, 77, 780.
(10) (a) Huang, J. M.; Wang, X. X.; Dong, Y. Angew. Chem. Int. Ed.
2011, 50, 924. (b) Beuchet, P.; Marrec, N. L.; Mosset, P. Tetrahe-
dron Lett. 1992, 33, 5959. (c) Yasuda, M.; Sugawa, Y.; Yamamoto,
A.; Shibata, I.; Baba, A. Tetrahedron Lett. 1996, 37, 5951.
(d) Wang, D. K.; Zhou, Y. G.; Tang, Y.; Hou, X. L.; Dai, L. X. J. Org.
Chem. 1999, 64, 4233.
b Isolated yield.
c Isolated yields of intermediate imines.
followed by a sequential proton and electron transfer leads
to an iminium ion 5.17 On the other hand, when TBHP was
utilized as the terminal oxidant, a tert-butoxyl radical gen-
erated by the copper-catalyzed decomposition of TBHP and
then abstracted a hydrogen atom from 1 to form intermedi-
ate radical, which also converted into iminium ion 5 via sin-
gle-electron transfer (SET).3,18 Then iminium ion 5 furnish
to imine 4 by deprotonation. A bidentate intermediate 6
was formed by the coordination of copper triflate to the
imine intermediate 4.7b Further, a trans-metalation takes
place between the allyl-Sn reagent 2 and the intermediate 6
giving allylic copper complex 7, followed by nucleophilic at-
tack of allyl to imine generates the homoallylic amine 3.
Cu(OTf)2
oxidant
Ar
R
Ar
R
Ar
R
N
N
H
N
H
O
O
O
H
4
5
1
Cu(OTf)2
Ar
R
O
R
O
N
(11) Kumaraswamy, G.; Murthy, A. N.; Pitchaiah, A. J. Org. Chem.
2010, 75, 3916.
(12) Wang, J.; Yang, S. Tetrahedron Lett. 2016, 57, 3444.
(13) Yoo, W.-J.; Tanoue, A.; Kobayashi, S. Asian J. Org. Chem. 2014, 3,
1066.
Cu OTf
Ar
R
Cu
TfO
N
N
H
SnBu3
OTf
Ar
O
H
2
7
6
3
Scheme 1 Plausible mechanism for the oxidative allylation of glycine
derivatives
(14) General Procedure for the Allylation of N-Aryl Glycine Esters
3a
N-PMP glycine ester 1a (0.2 mmol) and Cu(OTf)2 (10 mol%)
were reacted under oxygen atmosphere (1.0 atm) in DCE (1.0
mL) at 40 °C. After the glycine ester disappeared (by TLC), allyl-
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E