Published on Web 12/06/2005
Use of the Intramolecular Heck Reaction for Forming
Congested Quaternary Carbon Stereocenters.
Stereocontrolled Total Synthesis of (()-Gelsemine
Andrew Madin,1a Christopher J. O’Donnell,1b Taeboem Oh,1c David W. Old,1d
Larry E. Overman,* and Matthew J. Sharp1e
Contribution from the Department of Chemistry, UniVersity of California, IrVine,
516 Rowland Hall, IrVine, California 92697-2025
Received August 30, 2005; E-mail: leoverma@uci.edu
Abstract: Intramolecular Heck reactions of R,â-unsaturated 2-haloanilides derived from azatricyclo[4.4.0.02,8]-
decanone 5 efficiently install the congested spirooxindole functionality of gelsemine. Depending upon the
Heck reaction conditions and the nature of the â-substituent, either products having the natural or unnatural
configuration of the spirooxindole group are formed predominantly. Efforts to elaborate the hydropyran
ring of gelsemine from the endo-oriented nitrile substituent of pentacyclic Heck product 18 were unsuccessful.
Important steps in the ultimately successful route to (()-gelsemine (1) are as follows: (a) intramolecular
Heck reaction of tricyclic â-methoxy R,â-unsaturated 2-iodoanilide 68 in the presence of silver phosphate
to form pentacyclic product 69 having the unnatural configuration of the spirooxindole fragment, (b) formation
of hexacyclic aziridine 80 from the reaction of cyanide with intermediate 79 containing an N-methoxycarbonyl-
â-bromoethylamine fragment, (c) introduction of C17 by ring-opening of the aziridinium ion derived from
aziridine 80, and (d) base-promoted skeletal rearrangement of pentacyclic equatorial alcohol 82 to form
the oxacyclic ring and invert the spirooxindole functional group to provide hexacyclic gelsemine precursor
83.
gelsemine were disclosed in 1994 by the groups of Johnson,17
Speckamp,18 and Hart (21-oxogelsemine),19 additional total
syntheses were subsequently reported from the laboratories of
Introduction
At the time its structure was elucidated,2 the compact
hexacyclic cage structure of gelsemine (1) posed implicit
challenges to the capabilities of organic synthesis.3 In the
intervening 40 years, a number of approaches to gelsemine have
been described and much imaginative chemistry has been
developed in this context.4-16 The first total syntheses of (()-
(7) Stork, G.; Krafft, M. E.; Biller, S. A. Tetrahedron Lett. 1987, 28, 1035-
1038.
(8) (a) Vijn, R. J.; Hiemstra, H.; Kok, J. J.; Knotter, M.; Speckamp, W. N.
Tetrahedron 1987, 43, 5019-5030. (b) Hiemstra, H.; Vijn, R. J.; Speckamp,
W. N. J. Org. Chem. 1988, 53, 3882-3884. (c) Koot, W.-J.; Hiemstra, H.;
Speckamp, W. N. J. Org. Chem. 1992, 57, 1059-1061. (d) Dijkink, J.;
Cintrat, J. C.; Speckamp, W. N.; Hiemstra, H. Tetrahedron Lett. 1999, 40,
5919-5922.
(1) Current addresses: (a) Merck, Sharp & Dohme Laboratories, Terlings Park,
Harlow, Essex CM20 2QR, England. (b) Pfizer Inc., Groton/New London
Laboratories, Eastern Point Road, 8220-4044, Groton, CT 06340. (c)
California State University Northridge, Department of Chemistry, Northridge,
CA 91330. (d) Allergan Inc., 2525 DuPont Drive, RD 3D, Irvine, CA 92623.
(e) GlaxoSmithKline, 5 Moore Dr., Research Triangle Park, NC 27709.
(2) (a) Lovell, F. M.; Pepinsky, R.; Wilson, A. J. C. Tetrahedron Lett. 1959,
1 (4), 1-5. (b) Conroy, H.; Chakrabarti, J. K. Tetrahedron Lett. 1959, 1
(4), 6-13.
(3) For general reviews of Gelsemium alkaloids, see: (a) Saxton, J. E. In The
Alkaloids; Manske, R. H. F., Ed.; Academic Press: New York, 1965; Vol.
8, pp 93-117. (b) Bindra, J. S. In The Alkaloids; Manske, R. H. F., Ed.;
Academic Press: New York, 1973; Vol. 14, pp 83-121. (c) Liu, Z.-J.;
Lu, R.-R. ibid; Brossi, A., Ed.; Academic Press: San Diego, 1988; Vol.
33, pp 83-140. (d) Saxton, J. E. Nat. Prod. Rep. 1992, 9, 393-446. (e)
Takayama, H.; Sakai, S.-J. In The Alkaloids; Cordell, G. A., Ed.; Academic
Press: New York, 1997; Vol. 49, pp 1-78. For a review of synthetic work
in this area, see: (f) Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed.
2003, 42, 36-51.
(4) (a) Autrey, R. L.; Tahk, F. C. Tetrahedron 1967, 23, 901-917. (b) Autrey,
R. L.; Tahk, F. C. Tetrahedron 1968, 24, 3337-3345.
(5) Johnson, R. S.; Lovett, T. O.; Stevens, T. S. J. Chem. Soc. C 1970, 6,
796-800.
(9) (a) Abelman, M. M.; Oh, T.; Overman, L. E. J. Org. Chem. 1987, 52,
4130-4133. (b) Earley, W. G.; Jacobsen, E. J.; Meier, G. P.; Oh, T.;
Overman, L. E. Tetrahedron Lett. 1988, 29, 3781-3784. (c) Earley, W.
G.; Oh, T.; Overman, L. E. Tetrahedron Lett. 1988, 29, 3785-3788. (d)
Madin, A.; Overman, L. E. Tetrahedron Lett. 1992, 33, 4859-4862. (e)
Overman, L. E.; Sharp, M. J. J. Org. Chem. 1992, 57, 1035-1038.
(10) (a) Choi, J.-K.; Ha, D.-C.; Hart, D. J.; Lee, C.-S.; Ramesh, S.; Wu, S. J.
Org. Chem. 1989, 54, 279-290. (b) Hart, D. J.; Wu, S. C. Tetrahedron
Lett. 1991, 32, 4099-4102. (c) Hart, D. J.; Wu, S. C. Heterocycles 1993,
35, 135-138.
(11) Takayama, H.; Seki, N.; Kitajima, M.; Aimi, N.; Sakai, S.-I. Nat. Prod.
Lett. 1993, 2, 271-276.
(12) Johnson, A. P.; Luke, R. W. A.; Steele, R. W.; Boa, A. N. J. Chem. Soc.,
Perkin Trans. 1 1996, 883-893.
(13) Ng, F.; Chiu, P.; Danishefsky, S. J. Tetrahedron Lett. 1998, 39, 767-770.
(14) Sung, M. J.; Lee, C.-W.; Cha, J. K. Synlett 1999, 561-562.
(15) Avent, A. G.; Byrne, P. W.; Penkett, C. S. Org. Lett. 1999, 1, 2073-2075.
(16) Pearson, A. J.; Wang, X. J. Am. Chem. Soc. 2003, 125, 13326-13327.
(17) (a) Sheikh, Z.; Steel, R.; Tasker, A. S.; Johnson, A. P. J. Chem. Soc., Chem.
Commun. 1994, 763-764. (b) Dutton, J. K.; Steel, R. W.; Tasker, A. S.;
Popsavin, V.; Johnson, A. P. J. Chem. Soc., Chem. Commun. 1994, 765-
766.
(18) (a) Newcombe, N. J.; Ya, F.; Vijn, R. J.; Hiemstra, H.; Speckamp, W. N.
J. Chem. Soc., Chem. Commun. 1994, 767-768. (b) Speckamp, W. N.;
Newcombe, N. J.; Hiemstra, H.; Ya, F.; Vijn, R. J.; Koot, W.-J. Pure Appl.
Chem. 1994, 66, 2163-2166.
(19) (a) Kuzmich, D.; Wu, S. C.; Ha, D.-C.; Lee, C.-S.; Ramesh, S.; Atarashi,
S.; Choi, J.-K.; Hart, D. J. J. Am. Chem. Soc. 1994, 116, 6943-6944. (b)
Atarashi, S.; Choi, J.-K.; Ha, D.-C.; Hart, D. J.; Kuzmich, D.; Lee, C.-S.;
Ramesh, S.; Wu, S. C. J. Am. Chem. Soc. 1997, 119, 6226-6241.
(6) (a) Fleming, I.; Michael, J. P. J. Chem. Soc., Perkin Trans 1 1981, 1549-
1556. (b) Fleming, I.; Loreto, M. A.; Michael, J. P.; Wallace, I. H. M.
Tetrahedron Lett. 1982, 23, 2053-2056. (c) Fleming, I.; Loreto, M. A.;
Wallace, I. H. M.; Michael, J. P. J. Chem. Soc., Perkin Trans. 1 1986,
349-359. (d) Clarke, C.; Fleming, I.; Fortunak, J. M. D.; Gallagher, P. T.;
Honan, M. C.; Mann, A.; Nubling, C. O.; Raithby, P. R.; Wolff, J. J.
Tetrahedron 1988, 44, 3931-3934. (e) Fleming, I.; Moses, R. C.; Tercel,
M.; Ziv, J. J. Chem. Soc., Perkin Trans. 1 1991, 617-626.
9
18054
J. AM. CHEM. SOC. 2005, 127, 18054-18065
10.1021/ja055711h CCC: $30.25 © 2005 American Chemical Society