Published on Web 12/31/2009
Total Synthesis of the N,C-Coupled Naphthylisoquinoline
Alkaloids Ancistrocladinium A and B and Related Analogues
Gerhard Bringmann,* Tanja Gulder,† Barbara Hertlein, Yasmin Hemberger, and
Frank Meyer
Institute of Organic Chemistry, UniVersity of Wu¨rzburg, Am Hubland,
D-97074 Wu¨rzburg, Germany
Received November 17, 2009; E-mail: bringman@chemie.uni-wuerzburg.de
Abstract: The N,C-coupled naphthyldihydroisoquinoline alkaloids ancistrocladinium A (3) and B (4), which
possess an unprecedented iminium-aryl axis and show high in vitro antileishmanial activities, have been
synthesized via a short sequence of eight linear steps, without the need of protecting groups. Key steps
were a Buchwald-Hartwig amination and a Bischler-Napieralski cyclization, preferentially leading to the
naturally predominant M-atropo-diastereomer in the case of 3, while the N,C-axis is configurationally
semistable in 4. The highly convergent first access to this type of alkaloids will now facilitate the preparation
of structural analogues for structure-activity relationship studies. Its general applicability was shown by
the preparation of the sterically even more congested, as yet unnatural N,3′- and N,1′-coupled analogues,
ancistrocladinium C (5) and D (6).
in the rainforest in the Democratic Republic of Congo,9,10 we
Introduction
have recently discovered the first N,C-coupled naphthyldihy-
droisoquinolines, ancistrocladinium A (3), which has an un-
precedented rotationally hindered N,C-axis, and B (4), which
is configurationally semistable.9 Because 3 and 4 display very
good antiparasitic properties, especially against the protozoan
pathogen Leishmania major even in the low micromolar range,11
these natural products are promising lead structures12,13 for
urgently needed novel anti-infective drugs. The facile availability
of these compounds in sufficient quantities for further biological
and medicinal studies, for example, by total synthesis, is thus
an important task.
Plants of the families Ancistrocladaceae and Dioncophyl-
laceae are a rich, and the as yet only, source of naphthyliso-
quinoline alkaloids.1,2 More than 140 representatives of these
structurally and biosynthetically unique, bioactive natural
products have so far been isolated from the evergreen vines
indigenous to the rainforests of tropical Africa and South-East
Asia.3 Some of them show promising bioactivities against
pathogens of severe, and widespread, tropical diseases. As an
example, dioncophylline C (1, see Figure 1) exhibits a strong
activity against different Plasmodium species, both in vitro and
in ViVo.4-6 Butler et al.7 described the occurrence of a first,
apparently racemic, N,C-coupled naphthylisoquinoline alkaloid,
ancisheynine (2), which was synthetically accessed and stere-
ochemically characterized by our group.8 From an as yet not
fully identified, possibly new Ancistrocladus species occurring
Most of the numerous “normal”, C,C-coupled naphthyliso-
quinoline alkaloids synthesized so far have been constructed
by using the “lactone method”,14-17 an efficient pathway to
(9) Bringmann, G.; Kajahn, I.; Reichert, M.; Pedersen, S. E. H.; Faber,
J. H.; Gulder, T.; Brun, R.; Christensen, S. B.; Ponte-Sucre, A.; Moll,
H.; Heubl, G.; Mudogo, V. J. Org. Chem. 2006, 71, 9348.
(10) Bringmann, G.; Spuziak, J.; Faber, J. H.; Gulder, T.; Kajahn, I.; Dreyer,
M.; Heubl, G.; Brun, R.; Mudogo, V. Phytochemistry 2008, 69, 1065.
(11) Ponte-Sucre, A.; Faber, J. H.; Gulder, T.; Kajahn, I.; Pedersen, S. E. H.;
Schultheis, M.; Bringmann, G.; Moll, H. Antimicrob. Agents Chemo-
ther. 2007, 51, 188.
† Present address: Department of Chemistry, The Scripps Research
Institute, 10550 North Torrey Pines Road, La Jolla, California 92037.
(1) Bringmann, G.; Pokorny, F. In The Alkaloids; Cordell, G. A., Ed.;
Academic Press: San Diego, CA, 1995; pp 127-171.
(2) Bringmann, G.; Franc¸ois, G.; Ake´ Assi, L.; Schlauer, J. Chimia 1998,
52, 18.
(3) Bringmann, G.; Gu¨nther, C.; Ochse, M.; Schupp, O.; Tasler, S. In
Progress in the Chemistry of Organic Natural Products; Herz, W.,
Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer: Vienna, 2001;
pp 1-293.
(12) Bringmann, G.; Gulder, T.; Hentschel, U.; Meyer, F.; Moll, H.;
Morschha¨user, J.; Ponte-Sucre De Vanegas, A.; Ziebuhr, W.; Stich,
A.; Brun, R.; Mu¨ller, W. E. G.; Mudogo, V. Biofilm-Inhibiting Effect
and Anti-Infective Activity of N,C-Linked Arylisoquinolines and the
Use Thereof; PCT/EP2007/008440, 2007.
(4) Franc¸ois, G.; Timperman, G.; Eling, W.; Ake´ Assi, L.; Holenz, J.;
Bringmann, G. Antimicrob. Agents Chemother. 1997, 41, 2533.
(5) Schwedhelm, K. F.; Horstmann, M.; Faber, J. H.; Reichert, Y.;
Bringmann, G.; Faber, C. ChemMedChem 2007, 2, 541.
(6) Franc¸ois, G.; Timperman, G.; Holenz, J.; Ake´ Assi, L.; Geuder, T.;
Maes, L.; Dubois, J.; Hanocq, M.; Bringmann, G. Ann. Trop. Med.
Parasitol. 1996, 90, 115.
(13) Ponte-Sucre, A.; Gulder, T.; Wegehaupt, A.; Albert, C.; Rikanovic´,
C.; Scha¨flein, L.; Frank, A.; Schultheis, M.; Unger, M.; Holzgrabe,
U.; Bringmann, G.; Moll, H. J. Med. Chem. 2009, 52, 626.
(14) Bringmann, G.; Ochse, M.; Goetz, R. J. Org. Chem. 2000, 65, 2069.
(15) Bringmann, G.; Saeb, W.; Ru¨benacker, M. Tetrahedron 1999, 55, 423.
(16) Bringmann, G.; Holenz, J.; Weirich, R.; Ru¨benacker, M.; Funke, C.;
Boyd, M. R.; Gulakowski, R. J.; Franc¸ois, G. Tetrahedron 1998, 54,
497.
(7) Yang, L.-K.; Glover, R. P.; Yonganathan, K.; Sarnaik, J. P.; Godbole,
A. J.; Soejarto, D. D.; Buss, A. D.; Butler, M. S. Tetrahedron Lett.
2003, 44, 5827.
(8) Bringmann, G.; Gulder, T.; Reichert, M.; Meyer, F. Org. Lett. 2006,
8, 1037.
(17) Bringmann, G.; Jansen, J. R.; Reuscher, H.; Ru¨benacker, M.; Peters,
K.; Von Schering, H. G. Tetrahedron Lett. 1990, 31, 643.
9
10.1021/ja9097687 2010 American Chemical Society
J. AM. CHEM. SOC. 2010, 132, 1151–1158 1151