E. Mann et al. / Tetrahedron Letters 49 (2008) 903–905
905
6. Naud, S.; Pipelier, M.; Viault, G.; Adjou, A.; Huet, F.; Legoupy, S.;
Aubertin, A. M.; Evain, M.; Dubreuil, D. Eur. J. Org. Chem. 2007,
3296–3310.
7. Yasuda, T.; Sakai, Y.; Aramaki, S.; Yamamoto, T. Chem. Mater.
2005, 17, 6060–6068.
8. Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M. Angew. Chem.,
Int. Ed. 2000, 39, 233–237.
9. Nara, S.; Martinez, J.; Wermuth, C.-G.; Parrot, I. Synlett 2006, 3185–
3204.
10. (a) Hamasaki, A.; Ducray, R.; Boger, D. L. J. Org. Chem. 2006, 71,
185–193; (b) Helm, M. D.; Moore, J. E.; Plant, A.; Harrity, J. P. A.
Angew. Chem., Int. Ed. 2005, 44, 3889–3892.
11. (a) Biros, S. M.; Moisan, L.; Mann, E.; Carella, A.; Zhai, D.; Reed,
J. C.; Rebek, J., Jr. Bioorg. Med. Chem. Lett. 2007, 17, 4641–4645; (b)
Volonterio, A.; Moisan, L.; Rebek, J., Jr. Org. Lett. 2007, 9, 3733–
3736; (c) Moisan, L.; Dale, T. J.; Gombosuren, N.; Biros, S. M.;
Mann, E.; Hou, J. L.; Rebek J. Jr. Heterocycles 2007, available from:
12. (a) Yin, H.; Hamilton, A. D. Bioorg. Med. Chem. Lett. 2004, 14,
1375–1379; (b) Yin, H.; Lee, G.-I.; Sedey, K. A.; Rodriguez, J. M.;
Wang, H.-G.; Sebti, S. M.; Hamilton, A. D. J. Am. Chem. Soc. 2005,
127, 5463–5468.
13. (a) Boger, D. L.; Panek, J. S.; Patel, M. Org. Synth. 1992, 70, 79; (b)
Naud, S. Synlett 2004, 2836–2837.
the presence of a variety of functional groups such as car-
bamates (2f–g), ethers (2d), thioethers (2h–i) or sterically
challenged esters (2e), allowing the preparation of pyrida-
zines containing substituents that are conveniently pro-
tected side chains of functional amino acids. Various
compounds containing either aromatic or aliphatic substit-
uents in position 4 of the pyridazine core were prepared.
The best yields were obtained with esters with aromatic
rings in their structures (entries 1–4). For example, the syn-
thesis of compound 2e, which features a tert-butyl ester of
a glutamic acid residue, began with the commercially avail-
able tert-butyl methyl glutarate (entry 5). The Tebbe
reagent showed exclusive regioselectivity, giving the enol
ether of the less hindered methyl ester.
In summary, we have developed a method for the prep-
aration of functionalized 4-substituted pyridazines from
esters via Tebbe olefination, and IEDDAR reaction of
the resulting enol ethers. This procedure yielded, among
other examples, several pyridazines with protected side
chains of common amino acids. In addition, aldehyde 4
provides a function that can be elaborated into uncommon
side chains.
14. Hutchins, S. M.; Chapman, K. T. Tetrahedron Lett. 1996, 37, 4869–
4872.
15. Geyelin, P. H.; Raw, S. A.; Taylor, R. J. K. ARKIVOC 2007, Part 11,
37–45.
16. Hartmann, K. P.; Heuschmann, M. Tetrahedron 2000, 56, 4213–
4218.
Acknowledgments
17. For previous use of cyclic or acyclic enol ethers as dienophiles for the
IEDDAR with tetrazines see: (a) Gnichtel, H.; Gumprecht, C. Liebigs
Ann. Chem. 1985, 3, 628–632; (b) Boger, D. L.; Sakya, S. M. J. Org.
Chem. 1988, 53, 1415–1423; (c) Soenen, D. R.; Zimpleman, J. M.;
Boger, D. L. J. Org. Chem. 2003, 68, 3593–3598.
18. Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128,
13070–13071.
19. Hartley, R. C.; McKiernan, G. J. J. Chem. Soc., Perkin Trans. 1 2002,
2763–2793.
We are grateful to the Skaggs Institute for Research and
to Novartis for support. The Spanish Ministerio de Educa-
cion y Ciencia (Secretaria de Estado de Universidades e
Investigacion) provided a Postdoctoral Fellowship to
E.M. We thank Professor D. L. Boger for advice and help-
ful discussions.
References and notes
20. Tebbe reagent: l-Chlorobis(cyclopentadienyl)-(dimethylaluminium)-
l-methylenetitanium, Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J.
Am. Chem. Soc. 1978, 100, 3611–3613. Representative general
procedure: To a solution of the corresponding ester (1.04 mmol) in
THF (12 ml) cooled at À40 °C is added Tebbe reagent (2.7 ml,
1.3 equiv, 0.5 M in toluene). After 30 min the temperature is raised to
ambient over a period of 2 h. The mixture is then cooled to À10 °C
and the reaction is quenched by the dropwise addition of NaOH
(700 ll, 2 M solution). Reaction mixture is then allowed to warm to
room temperature. The solution is then diluted with excess of ether
and filtered through a pad of Celite. Solvent is removed under reduced
pressure and the crude residue is directly diluted in dioxane (10 ml)
and added to a solution of tetrazine 1 (203 mg, 1.0 mmol) in dioxane
(10 ml). After 18 h at room temperature, volatiles are removed and
the crude residue is purified on silica gel (hexane/AcOEt mixtures) to
afford the desired products.
1. Rohet, F.; Rubat, C.; Coudert, P.; Couquelet, J. Bioorg. Med. Chem.
1997, 5, 655–659.
2. Tucker, J. A.; Allwine, D. A.; Grega, K. C.; Barbachyn, M. R.;
Klock, J. L.; Adamski, J. L.; Brickner, S. J.; Hutchinson, D. K.; Ford,
C. W.; Zurenko, G. E.; Conradi, R. A.; Burton, P. S.; Jensen, R. M. J.
Med. Chem. 1998, 41, 3727–3735.
3. Tamayo, N.; Liao, L.; Goldberg, M.; Powers, D.; Tudor, Y. Y.; Yu,
V.; Wong, L. M.; Henkle, B.; Middleton, S.; Syed, R.; Harvey, T.;
Jang, G.; Hungate, R.; Dominguez, C. Bioorg. Med. Chem. Lett.
2005, 15, 2409–2413.
4. Benson, S. C.; Palabrica, C. A.; Snyder, J. K. J. Org. Chem. 1987, 52,
4610–4614.
5. Gyoten, M.; Nagaya, H.; Fukuda, S.; Ashida, Y.; Kawano, Y. Chem.
Pharm. Bull. 2003, 51, 122–133.