C O M M U N I C A T I O N S
Scheme 2. Enantioselective Total Synthesis of Neodysidenin
Table 1. Radical Trichloromethylation: N-Acyloxazolidinone
Scopea
enantioselective total synthesis of trichloroleucine-derived marine
natural product neodysidenin.
Acknowledgment. Support was provided by Eli Lilly, NIGMS
(R01 GM077379), and NSF (CHE-0836757, undergraduate summer
support to L.R.M.). We thank Dr. Wu (UCSB) for X-ray analysis,
and Professor Molinski (UCSD) for helpful discussions.
Supporting Information Available: Experimental procedures and
1
copies of H and 13C NMR spectra. This information is available free
a See Supporting Information for experimental details. b All yields are
of isolated products; dr determined by 500 MHz 1H NMR of the crude
mixture of products. c 1.0 equiv of BrCCl3 was used, with 3 equiv of the
double addition product isolated in 97% yield (dr >98:2).
References
(1) (a) Gribble, G. W. J. Chem. Educ. 2004, 81, 1441–1449.
(2) (a) MacMillan, J. B.; Trousdale, E. K.; Molinski, T. F. Org. Lett. 2000, 2,
2721–2723. (b) Unson, M. D.; Rose, C. B.; Faulkner, D. J.; Brinen, L. S.;
Steiner, J. R.; Clardy, J. J. Org. Chem. 1993, 58, 6336–6343.
(3) (a) Butler, A.; Walker, J. V. Chem. ReV. 1993, 93, 1937–1944. (b) Butler,
A. Curr. Opin. Chem. Biol. 1998, 2, 279–285.
Table 2. Radical Haloalkylation: Haloalkylating Agent Scope
(4) (a) Galonic, D. P.; Vaillancourt, F. H.; Walsh, C. T. J. Am. Chem. Soc.
2006, 128, 3900–3901. (b) Flatt, P. M.; O’Connell, S. J.; McPhail, K. L.;
Zeller, G.; Willis, C. L.; Sherman, D. H.; Gerwick, W. H. J. Nat. Prod.
2006, 69, 938–944.
(5) (a) Sugimoto, J.; Miura, K.; Oshima, K.; Utimoto, K. Chem. Lett. 1991,
1319–1322. (b) Mitani, M.; Sakata, H.; Tabei, H. Bull. Chem. Soc. Jpn.
2002, 75, 1807–1814.
(6) (a) Shibuya, G. M.; Kanady, J. S.; Vanderwal, C. D. J. Am. Chem. Soc.
2008, 130, 12514–12518. (b) Nilewski, C.; Geisser, R. W.; Carreira, E. M.
Nature 2009, 457, 573–576. (c) Bedke, D. K.; Shibuya, G. M.; Pereira,
A.; Gerwick, W. H.; Haines, T. H.; Vanderwal, C. D. J. Am. Chem. Soc.
2009, 131, 7570–7572.
(7) Sadar, M. D.; Williams, D. E.; Mawji, N. R.; Patrick, B. O.; Wikanta, T.;
Chasanah, E.; Irianto, H. E.; Soest, R. V.; Andersen, R. J. Org. Lett. 2008,
10, 4947–4950.
(8) (a) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science 1945, 102, 128.
(b) Kharasch, M. S.; Reinmuth, O.; Urry, U. H. J. Am. Chem. Soc. 1947,
69, 1105–1110.
(9) Okano, T.; Shimizu, T.; Sumida, K.; Eguchi, S. J. Org. Chem. 1993, 58,
5163–5166.
a All reported yields are of isolated products; dr was determined by
(10) First application of a Ru(II) complex for the generation of CCl3 radicals:
Matsumoto, H.; Nakano, T.; Nagai, Y. Tetrahedron Lett. 1973, 14, 5147–5150.
(11) Besides the control of stereoselectivity, an important function of the chiral
auxiliary is to suppress elimination of HCl in products in avoidance of
A1,3-strain. The HCl elimination is a common problem in related methods
(refs 9, 5).
500 MHz H NMR. b At the indicated stereocenter.
1
remainder of the mass balance for the reactions in Table 2 is the
substrate, with all yields based on recovered starting material exceeding
90%.
(12) Moreira, I. de P. R.; Bofill, J. M.; Anglada, J. M.; Solsona, J. G.; Nebot,
J.; Romea, P.; Urpi, F. J. Am. Chem. Soc. 2008, 130, 3242–3243.
(13) A related trifluoromethylation process using photoactivated Ru(II) and Ir(I)
catalysis with enamine intermediates has been recently reported: Nagib,
D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2009, 131,
10875–10877.
(14) (a) Evans, D. A.; Upri, F.; Somers, T. C.; Clark, J. S.; Bilodeau, M. T.
J. Am. Chem. Soc. 1990, 112, 8215–8216. (b) Sibi, M. P.; Sausker, J. B.
J. Am. Chem. Soc. 2002, 124, 984–991.
(15) Recent review: Severin, K. Curr. Org. Chem. 2006, 10, 217–224.
(16) Davies, S. G.; Sanganee, H. J. Tetrahedron: Asymmetry 1999, 6, 671–674.
(17) Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984–995.
(18) Mabic, S.; Cordi, A. A. Tetrahedron 2001, 57, 8861–8866.
(19) Both diastereomers at C13 of neodysidenin have been prepared. Physical
data for only the 13S isomer fully matched those reported for the natural
product, resulting in the reassignment of configuration at C13 [natural:
[a]D23-52.1° (0.165 CHCl3) ref 2a; 13R: [a]D23 +26.1° (0.50, CHCl3); 13S:
[a]D23-62.3° (0.20 CHCl3)]. Thus, neodysidenin and pseudodysidenin
appear to be identical: Jime´nez, J. I.; Scheuer, P. J. J. Nat. Prod. 2001, 64,
200–203. See Supporting Information for details.
On the basis of this methodology, the total synthesis of
neodysidenin through the intermediacy of (2S,4S)-5,5,5-trichloro-
leucine was accomplished (Scheme 2). Imide 2 was advanced to
Ellman-type N-sufinimine 4 in 5 steps.17 Sc-Catalyzed Strecker
synthesis with Me3SiCN followed by hydrolysis delivered (2S,4S)-
5,5,5-trichloroleucine (82%, dr 94:6).18 Using this modular ap-
proach, all stereoisomers of 5,5-di- or 5,5,5-trichloroleucine may
be accessed in a straightforward manner. Subsequent N-acylation
of the amino acid with reagent 5, also derived from nitrile 3, readily
afforded dipeptide 6, which has been advanced to neodysidenin in
one additional amidation step (EDC, HOAt, THF, 86% yield).19
In summary, a direct ruthenium-catalyzed radical chloroalkylation
capitalizing on the valence tautomerism of titanium enolates has
been developed. This method served as the centerpiece in the
JA910154F
9
J. AM. CHEM. SOC. VOL. 132, NO. 5, 2010 1483